DOI QR코드

DOI QR Code

Production of Cellulolytic Enzymes by Aspergillus niger on Solid and Submerged State Fermentation

액체와 고체 발효 조건에서 Aspergillus niger의 셀루로오스계 효소 생산

  • Chandra, M. Subhosh (Department of Microbiology, Sri Krishnadevaraya University, Department of Biotechnology, Microbial Molecular Genetics lab, College of Natural Resources and Life Science, Dong-a University) ;
  • Reddy, B. Rajasekhar (Department of Microbiology, Sri Krishnadevaraya University) ;
  • Choi, Yong-Lark (Department of Biotechnology, Microbial Molecular Genetics lab, College of Natural Resources and Life Science, Dong-a University)
  • Published : 2008.08.30

Abstract

Microbial production of cellulolytic enzymes by Aspergillus niger in solid state fermentation (SSF) and submerged state fermentation (SF) in laboratory scale was compared. Czapek Dox liquid broth amended with cellulose (0.5%) was used for cultivation in SF, whereas rice bran was used as a solid support, moistened with cellulose, amended Czapek Dox broth for growth in SSF. The production of Carboxymethyl cellulase, Filter paperase and ${\beta}$-Glucosidase was monitored at regular intervals. The peak production of the enzymes occurred within 3 days of incubation in SSF as against $\geq$ 7 days in SF. SSF gave higher yields of enzymes in comparison to SF. Maximum titres of 0.40, 0.62 and 0.013 U/ml in respect of FPase, CMCase and ${\beta}$-glucosidase in SSF were recovered as against 0.13, 0.06 and 0.0013 U/ml in SF respectively, at their respective peak time intervals. Hence, SSF appeared to be a better choice for production of cellulolytic enzymes by Aspergillus niger.

Aspergillus niger가 액체발효(SF) 와 고체발효의 시험 규모 조건에서의 셀루로오스계 효소의 생산을 비교하였다. 액체배지는 0.5% 셀루로오스가 함유된 Czapek Dox를 사용하였고, 고체 지지체로 사용한 쌀겨는 셀루로오스로 적시고 SSF 발효를 위하여 Czapek Dox 배지를 첨가하였다. CMCase, 여지 paperase 그리고 ${\beta}$-Glucosidase 의 생산을 경시적으로 측정하였다. SSF 배양에서의 3일간의 효소 생산량은 SF 에서의 7일간 배양과 같았다. 따라서 SSF 조건이 SF 배양 조건보다 많은 효소를 생산함을 알 수 있었다. SSF 조건에서 FPase, CMCase 및 ${\beta}$-glucosidase의 최대 활성은 0.40, 0.62 및 0.013 U/ml 였으나, SF 조건에서는 0.13, 0.06 및 0.0013 U/ml의 활성을 나타내었다. 결론적으로 Aspergillus niger에 의해 생산되는 셀루로오스계 효소의 생산을 위해서는 SSF 발효 조건의 선택이 유리하다는 것을 알 수 있었다.

Keywords

References

  1. Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25-28 https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  2. Bhat, M. K. 2000. Cellulases and related enzymes in Biotechnology. Biotechnol. Adv. 18, 355-383 https://doi.org/10.1016/S0734-9750(00)00041-0
  3. Eriksson, K. E., R. A. Blanchette and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, Berlin, pp. 407
  4. Ghosh, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59, 257-268 https://doi.org/10.1351/pac198759020257
  5. Gregg, D. J. and J. N. Saddler. 1996. Factors affecting cel lulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol. Bioeng. 51, 375-383 https://doi.org/10.1002/(SICI)1097-0290(19960820)51:4<375::AID-BIT1>3.3.CO;2-G
  6. Hamlyn, P. F. 1998. Fungal biotechnology. British Mycological society Newsletter May
  7. Hanif, A., A. Yasmeen and M. I. Rajoka. 2004. Induction, production, repression and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresource Technol. 94, 311- 319 https://doi.org/10.1016/j.biortech.2003.12.013
  8. Herr, D. 1979. Production of cellulases and its $\beta$-glucosidases by Trichoderma viride TTCC 1433 in submerged cultures on different substrates. Biotechnol. Bioeng. 21, 1361- 1363 https://doi.org/10.1002/bit.260210805
  9. Himmel, M. E., M. F. Ruth and C. E. Wyman. 1999. Cellulase from community products from cellulosic biomasss. Biotechnol. 13, 358-363
  10. Klyosov, A. A. 1990. Trends in biochemistry and enzymology of cellulose degradation. Biochem. 29, 10577-10585 https://doi.org/10.1021/bi00499a001
  11. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265-275
  12. Lynd, L. R., P. J. Weimer, W. H. Van Zyl and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and Biotechnology. Microbial. Mol. Biol. Rev. 66, 506-577 https://doi.org/10.1128/MMBR.66.3.506-577.2002
  13. Mandels, M. and J. Weber. 1969. Cellulases and its application. Advances in Chemistry series. In Gould, R. F. (Ed.), American Chemical Society, Washington, DC, 95, 391- 414
  14. Muniswaran, P. K. A. and N. C. L. N. Charyulu. 1994. Solid substrate fermentation of coconut coir pith for cellulase production. Enzyme Microb. Technol. 16, 436-440 https://doi.org/10.1016/0141-0229(94)90161-9
  15. Narasimha, G., G. V. A. K. Babu and B. Rajasekhar Reddy. 1999. Effect of effluents of cotton ginning industry on physico-chemical and biological properties of soil. J. Environ. Biol. 20, 235-239
  16. Oriol, E., B. Schettino and G. Viniegra-Gonzalez. 1988. Solid-state culture of Aspergillus niger on support. J. Ferment. Technol. 66, 57-62 https://doi.org/10.1016/0385-6380(88)90130-6
  17. Reczey, K., Z. Szengyel and G. Zacchi. 1996. Cellulase production by T. reesei. Bioresour. Technol. 57, 25-30 https://doi.org/10.1016/0960-8524(96)00038-7
  18. Singh, A. and K. Hayashi. 1994. Microbial cellulases, protein architecture, molecular properties and biosynthesis. Adv. Appl. Microbiol. 40, 1-44
  19. Subhosh Chandra, M., B. Viswanath and B. Rajasekhar Reddy. 2007. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Ind. J. Microbiol. 47, 323-328 https://doi.org/10.1007/s12088-007-0059-x
  20. Umekalsom, M. S., A. B. Ariff, Z. H. Shamsuddin, C. C. Tong, M. A. Hassan and M. I. A. Karim. 1997. Production of cellulase by a wild strain of Chaetomium globosum using delignified oil palm empty fruit bunch fiber as substrate. Appl. Microbiol. Biotechnol. 47, 592-595
  21. Wayman, M. and S. Chen. 1992. Cellulase production by Trichoderma reesei using whole wheat flour as a carbon source. Enzyme Microb. Technol. 14, 825-831 https://doi.org/10.1016/0141-0229(92)90099-A
  22. Zaldivar, M., J. C. Velasquez, I. Contreras and L. M. Perez. 2001. Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and / or biocontrol. Electronic J. Biotechnol. 4, 160-167

Cited by

  1. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation vol.7, pp.3, 2014, https://doi.org/10.1016/j.jrras.2014.04.004
  2. Fungal Strain Improvement for Cellulase Production Using Repeated and Sequential Mutagenesis vol.37, pp.4, 2009, https://doi.org/10.4489/MYCO.2009.37.4.267