Molecular Weight and Structural Changes of Enzymatic Hydrolysate from Bombyx mori Fibroin

효소처리에 의한 Bombyx mori fibroin 가수분해물의 분자량 및 구조 변화

  • Yeo, Joo-Hong (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Park, Kyung-Ho (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee Univesity) ;
  • Lee, Kwang-Gill (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Woo, Soon-Ok (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Kweon, Hae-Yong (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Han, Sang-Mi (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Lee, Heui-Sam (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Lee, Jin-Ah (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee Univesity) ;
  • Lee, In-Seok (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee Univesity) ;
  • Cho, Yun-Hi (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee Univesity)
  • 여주홍 (농촌진흥청 잠사양봉소재과) ;
  • 박경호 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이광길 (농촌진흥청 잠사양봉소재과) ;
  • 우순옥 (농촌진흥청 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 잠사양봉소재과) ;
  • 한상미 (농촌진흥청 잠사양봉소재과) ;
  • 이희삼 (농촌진흥청 잠사양봉소재과) ;
  • 이진아 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이인석 (경희대학교 동서의학대학원 의학영양학과) ;
  • 조윤희 (경희대학교 동서의학대학원 의학영양학과)
  • Published : 2008.08.01

Abstract

This study examined the enzymatic digestion, average molecular weight distribution and structural changes of Bombyx mori silk gland fibroin using gel penneation chromatography and nuclear magnetic resonance methods. The pure-separation of calcium chloride-treated fibroin hydrolysates was carried out by gel filtration chromatography. Also, the effects of fibroin's enzymatic hydrolysis were investigated using an edible enzyme. The average molecular weight of three hydrolysate samples (silk gland fibroin (SF), SF-calcium chloride (SFC), and SFC-enzyme) were measured to compare their characteristics. The molecular weights of SF, SFC, and SFC-enzyme were approximately 108,000, 65,000, and 1,000 Da, respectively. Finally, we determined the structural characteristic changes of the different enzymatically digested samples by $^{13}C$ nuclear magnetic resonance methods. For the enzymatically digested fibroin, the glycine $^{13}C^{\alpha}$ resonance indicated that the amino acid was dramatically changed and/or separated out; however, this was not shown for the normal Bombyx mori silk gland fibroin.

본 연구는 누에 실 샘으로부터 얻은 Bambyx mori 피브로인의 효소 가수분해 시 그 분자량 및 구조적 특성을 파악하고자 하였다. Gel filtration chromatography(GFC)에 의해 B. mori 피브로인을 순수 분리한 결과 회수율이 약 70% 이상으로 기존의 방법(막과 튜브 분리법)에 비해 약 40% 이상 높았다. 이는 GFC법이 고 순수 고 수율의 B. mori 피브로인을 얻을 수 있는 방법임이 확인되었다. Gel permeation chromatography에 의한 분자량 측정 결과 누에 체내 피브로인, 염화칼슘 용해 물 및 효소 가수분해물이 각각 평균분자량 108,000 Da 내외, 65,000 Da 내외 및 1,000 Da 내외임을 알 수 있었다 또한 효소 가수분해에 의한 구조적 변화를 $^{13}C-NMR$로 알아본 결과, B. mori 피브로인의 메인 골격에 해당되는 glycine, alanine 및 serine 등의 골격 피크가 관찰되어졌으며, 특히 효소가수분해 시 glycine를 의미하는 40-44 ppm 부근의 피크가 높게 나타난 것으로 보아 -G-A-G-A-반복 구조가 분해되었고, 이로 인해 분자량이 현저히 저하되었을 것으로 생각되어진다.

Keywords

References

  1. Katz F. Research priorities move toward healthy and safe. Food Technol.-Chicago 54: 42-46 (2000)
  2. Rutherfurd KJ, Gill HS. Peptides affecting coagulation. Brit. J. Nutr. 84: 99-102 (2000)
  3. Yeo JH, Lee KG, Kim HC, Oh YL, Kim AJ, Kim SY. The effect of PVA/chitosan/fibroin(PCF)-blended sponge sheets on wound healing in rats. Biol. Pharm. Bull. 23: 1220-1223 (2000) https://doi.org/10.1248/bpb.23.1220
  4. Yeo JH, Lee KG, Kweon HY, Woo SO, Han SM, Kim SS, Demura M. Fractionation of a silk fibroin hydrolysate and its protective function of hydrogen peroxide toxicity. J. Appl. Polym. Sci. 102: 772-776 (2006) https://doi.org/10.1002/app.23740
  5. Kim DK, Kang YK, Lee MY, Lee KG, Yeo JH, Lee WB, Kim YS, Kim SS. Neuroprotection and enhancement of learning and memory by BF-7. J. Health Sci. 51: 317-324 (2005) https://doi.org/10.1248/jhs.51.317
  6. Lee KG, Yeo JH, Lee YW, Kweon HY, Woo SO, Han SM, Kim JH. Studies on industrial utilization of silk protein. Korean J. Food Sci. Ind. 36: 25-37 (2003)
  7. Yeo JH, Lee KG and Lee YW. Pure-separation of calcium chloridetreated silk fibroin hydrolusata by gel filteration chromatography and effect of it's enzymatic hydrolysis. Korean J. Seric. Sci. 41: 211-215 (1999)
  8. Piotr K, Barbara PP. Urethane oligomers as raw materials and intermediates for polyurethane elastomers. Methods for synthesis, structural studies, and analysis of chemical composition. Polymer 44: 5075-5101 (1998)
  9. Madyarov S, Lee KG, Yeo JH, Nam J, Lee YW. Improved method for the preparation of silk fibroin hydrolysates. Korean J. Seric. Sci. 41: 102-110 (2000)
  10. Kim MH, Moon HR. Effects of sample pretreatment in amino acid analysis. Korean J. Clin. Pathol. 21: 34-39 (2001)
  11. Cooper WT, Heiman, AS, Yates RR. Early diagenesis of organic carbon in sediments from the peruvian upwelling zone. J. Am. Chem.Soc. 305: 158-172 (1986)
  12. Kim HA, Park KH, Yeo JH, Lee KG, Jeong DH, Kim SH, Cho YH. Dietary effect of silk protein sericin or fibroin on plasma and epidermal amino acid concentration of NC/Nga mice. Korean J. Nutr. 39: 520-528 (2006)
  13. Chen K, Takano R, Hirabayashi K. Production of soluble fibroin powder by hydrolysis with hydrochloric acid and physical properties. J. Scri. Sci. Jpn. 60: 358-362 (1991)
  14. Chen K, Iura K, Aizawa R, Hirabayashi K. The digestion of silk fibroin by rat. J. Scri. Sci. Jpn. 60: 402-403 (1991)
  15. Chen K. Iura K. Takano R, Hirabayashi K. Effect of fibroin administration on the blood cholesterol level of rats loaded with cholesterol. J.Scri. Sci. Jpn. 62: 56-60 (1993)
  16. Lu X, Akiyama D, Hirabayashi K, Production of silk powder and properties. J. Scri. Sci. Jpn. 63: 21-27 (1994)
  17. Porath J, Flodin P. Gel filtration : A method for desalting and group separation. Nature 183: 1657-1659 (1959) https://doi.org/10.1038/1831657a0
  18. Ganapathy V, Leibach FH. Peptide transporters. Curr. Opin. Nephrol. Hy. 5: 395-400. (1996) https://doi.org/10.1097/00041552-199609000-00003
  19. Shimura K, Katagata Y. Chemical Structure of Fibroin. Shinshu University, Ueda, Japan. pp. 335-352 (1980)
  20. Asakura T, Yamazaki Y, Koo WS, Demura M. Determination of the mutual orientation of the $^{15}N$- and $^{13}C$-NMR chemical shift tensors of $^{13}C-^{15}N$ double labeled model peptides for silk fibroin from the dipolar- coupled powder patterns. J. Mol. Struct. 446: 179-190 (1998) https://doi.org/10.1016/S0022-2860(98)00291-9
  21. Hopfer U, Nelson K, Perrotto J, Isselbacher KJ. Glucose transport in isolated brush border membrane from rat small intestine. J. Biol. Chem. 248: 25-32 (1973)
  22. Groff JL, Gropper SS. Advanced Nutrition and Human Metabolism. $3^{rd}$ ed. Wadsworth and Thomson Learning, Belmont, CA, USA. pp.178-204 (2000)
  23. Asakura T, Sakakuchi R, Demura M, Manabe T, Uyama A. In vitro production of Bombyx mori silk fibroin by organ culture of the posterior silk glands; Isotope labeling and fluorination of the silk fibroin. Biotechnol. Bioeng. 4: 245-252 (1993)
  24. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 28: 2413- 2419 (2000) https://doi.org/10.1093/nar/28.12.2413