Anti-complement Activity of Phenolic Compounds from the Stem Bark of Magnolia obovata

  • Published : 2008.09.30

Abstract

Five neolignans (1 - 4, 8), two sesquiterpene-lignans (5 - 6), and two phenylpropanoids (7, 9) were isolated from the stem bark of Magnolia obovata Thunberg (Magnoliaceae) by repeated column chromatography. The structures of isolated compounds were identified as 4-methoxyhonokiol (1), obovatol (2), magnolol (3), honokiol (4), eudeshonokiol B (5), eudesobovatol B (6), coumaric acid (7), magnaldehyde B (8), and ${\rho}-coumaric$ acid (9) on the basis of spectroscopic analysis including 2D-NMR and MS data. Compounds 1 - 9 were evaluated for their anti-complement activities against the classical pathway of the complement system. Of them, compound 8 showed significant anti-complement activity on the classical pathway with $IC_{50}$ value of 102.7 ${\mu}M$, whereas compounds 1 - 7 and 9 were inactive. This result indicated that an aldehyde group in the neolignan is important for the anti-complement activity against the classical pathway.

Keywords

References

  1. Bae, E.A., Han, M.J., Kim, N.J., and Kim, D.H., Anti-Helicobacter pylori activity of herbal medicines. Biol. Pharm. Bull. 21, 990-992 (1998) https://doi.org/10.1248/bpb.21.990
  2. Chang, B.S., Lee, Y.M., Ku, Y., Bae, K.H., and Chung, C.P., Antimicrobial activity of magnolol and honokiol against periodontopathic microorganisms. Planta Med. 64, 367-369 (1998) https://doi.org/10.1055/s-2006-957453
  3. Ember, J.A., and Hugli, T.E., Complement factors and their receptors. Immunopharmacology 38, 3-15 (1997) https://doi.org/10.1016/S0162-3109(97)00088-X
  4. Fujita, M., Itokawa, H., and Sashida, Y., Honokiol, a new phenolic compound isolated from the bark of Magnolia obovata. Chem. Pharm. Bull. 20, 212-213 (1972) https://doi.org/10.1248/cpb.20.212
  5. Fukuyama, Y., Otoshi, Y., Miyoshi, K., Nakamura, K., Kodama, M., Nagasawa, M., Hasegawa, T., Okazaki, H., and Sugawara, M., Neurotrophic sesquiterpene-neolignans from Magnolia obovata: structure and neurotrophic activity. Tetrahedron 48, 377-392 (1992) https://doi.org/10.1016/S0040-4020(01)89002-5
  6. Hamasaki, Y., Kobayashi, I., Zaitu, M., Tsuji, K., Kita, M., Hayasaki, R., Muro, E., Yamamoto, S., Matsuo, M., Ichimaru, T., and Miyazaki, S., Magnolol inhibits leukotriene synthesis in rat basophilic leukemia- 2H3 cells. Planta Med. 65, 222-226 (1999) https://doi.org/10.1055/s-1999-13984
  7. Iiyama, K., Lam, T.B.T., and Stone, B.A., Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29, 733-737 (1990) https://doi.org/10.1016/0031-9422(90)80009-6
  8. Ikeda, K., Sakai, Y., and Nagase, H., Inhibitory effect of magnolol on tumor metastasis in mice. Phytotherapy Res. 17, 933-937 (2003) https://doi.org/10.1002/ptr.1264
  9. Jung, K.Y., Oh, S.R., Park, S.H., Lee, I.S., Ahn, K.S., Lee, J.J., and Lee, H.K., Anti-complement activity of tiliroside from the flower buds of Magnolia fargesii. Biol. Pharm. Bull. 21, 1077-1078 (1998) https://doi.org/10.1248/bpb.21.1077
  10. Kazuo, I., Toshiyuki, I., Kazuhiko, I., Masa, T., Masao H., and Tsuneo, N., Obovata and obovatal, novel biphenyl ether lignans from the leaves of Magnolia obovata Thunb. Chem. Pharm. Bull. 30, 3347-3353 (1982) https://doi.org/10.1248/cpb.30.3347
  11. Kirschfink, M., Controlling the complement system in inflammation. Immunopharmacology 38, 51-62 (1997) https://doi.org/10.1016/S0162-3109(97)00057-X
  12. Min, B.S., Lee, I.S., Chang, M.J., Yoo, J.K., Na, M.K., Hung, T.M., Thuong, P.T., Lee, J.P., Kim, J.H., Kim, J.C., Woo, M.H., Choi, J.S. Lee, H.K., and Bae, K., Anti-Complementary activity against classical pathway of triterpenoids from the whole plant of Aceriphyllum rossii. Planta Med. 74, 726-729 (2008) https://doi.org/10.1055/s-2008-1074534
  13. Min, B.S., Lee, S.Y., Kim, J.H., Lee, J.K., Kim, T.J., Kim, D.H., Kim, Y.H., Joung, H., Nakamura, N., Miyashiro, H., Hattori, M., and Lee, H.K., Anti-complement activity of constituents from the stem-bark of Juglans mandshurica. Biol. Pharm. Bull. 26, 1042-1044 (2003) https://doi.org/10.1248/bpb.26.1042
  14. Namba, T., Tsunezuka, M., and Hattori, M., Dental caries prevention by traditional Chinese medicines. Part II. Potent antibacterial action of Magnoliae Cortex extracts against Streptococcus mutans. Planta Med. 44, 100-106 (1982) https://doi.org/10.1055/s-2007-971412
  15. Nitao, J.K., Nair, M.G., Thorogood, D.L., Johnson, K.S., and Scriber, J.M., Bioactive neolignans from the leaves of Magnolia virginiana. Phytochemstry 30, 2193-2195 (1991) https://doi.org/10.1016/0031-9422(91)83612-O
  16. Park, S.H., Oh, S.R., Jung, K.Y., Lee, I.S., Ahn, K.S., Kim, J.H., Kim, Y.S., Lee, J.J., and Lee, H.K., Acylated flavonol glycosides with anticomplement activity from Persicaria lapathifolia. Chem. Pharm. Bull. 47, 1484-1486 (1999) https://doi.org/10.1248/cpb.47.1484
  17. Shoji, Y., Takashi, N., Akihide, K., Toshihiro, N., and Itsuo, N., Isolation and characterization of phenolic compounds from Magnoliae Cortex produced in China. Chem. Pharm. Bull. 39, 2024-2036 (1991) https://doi.org/10.1248/cpb.39.2024
  18. Thuong, P.T., Min, B.S., Jin, W.Y., Na, M.K., Lee, J.P., Seong, R.S., Lee, Y.M., Song, K.S., Seong, Y.H., Lee, H.K., Bae, K., and Kang, S.S., Anti-complementary activity of ursane-type triterpenoids from Weigela subsessilis. Biol. Pharm. Bull. 29, 830-833 (2006) https://doi.org/10.1248/bpb.29.830
  19. Youn, U.J., Chen, Q.C., Jin, W.I., Lee I.S., Kim, H.J., Lee, J.P., Jang, M.J., Min, B.S., and Bae, K., Cytotoxic lignans from the stem bark of Magnolia officinalis. J. Nat. Prod. 70, 1687-1689 (2007) https://doi.org/10.1021/np070388c
  20. Youn, U.J., Chen, Q.C., Lee, I.S., Kim, H.J., Hung, T.M., Na, M.K., Lee, J., Min, B.S., and Bae, K., Sesquiterpene-neolignans from the stem bark of Magnolia obovata and their cytotoxic activity. Nat. Prod. Sci. 14, 51-55 (2008a)
  21. Youn, U.J., Chen, Q.C., Lee, I.S., Kim, H.J., Yoo, J.K., Lee, J.P., Na, M.K., Lee, J., Min, B.S., and Bae, K., Two new lignans from the stem bark of Magnolia obovata and their cytotoxic activity. Chem. Pharm. Bull. 56, 115-117 (2008b) https://doi.org/10.1248/cpb.56.115
  22. Wang, J.P., Ho, T.F., Chang, L.C., and Chen, C.C., Anti-inflammatory effect of magnolol, isolated from Magnolia officinalis, on A23187- induced pleurisy in mice. J. Pharm. Pharmacol. 47, 857-860 (1995) https://doi.org/10.1111/j.2042-7158.1995.tb05754.x
  23. Watanabe, K., Pharmacology of magnolia bark with special reference to gastrointestinal functions. Gendai Toyo Igaku. 7, 54-59 (1986)
  24. Watanabe, K., Watanabe, H., Goto, Y., Yamamoto, N., and Yoshizaki, M., Studies on the active principles of magnolia bark. Centrally acting muscle relaxant activity of magnolol and honokiol. Jpn. J. Pharmacol. 25, 605-607 (1975) https://doi.org/10.1254/jjp.25.605
  25. Watanabe, K., Watanabe, H., Goto, Y., Yamaguchi, M., Yamamoto, N., and Hagino, K., Pharmacological properties of magnolol and honokiol extracted from Magnolia officinalis: central depressant effects. Planta Med. 49, 103-108 (1983) https://doi.org/10.1055/s-2007-969825
  26. Yamahara, J., Miki, S., Matsuda, H., and Fujimura, H., Screening test for calcium antagonists in natural products. The active principles of Magnolia obovata. Yakugaku Zasshi 47, 1153-1161 (1990)