결핵성 흉막염 환자에서 흉수 내 Matrix Metalloproteinases 및 Tissue Inhibitors of Metalloproteinases 농도와 잔여 흉막비후와의 관계

The Relation of Residual Pleural Thickening with Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases of Pleural Effusion in Patients with Tuberculous Pleuritis

  • 최영권 (가천의과학대학교 의학전문대학원) ;
  • 안창혁 (가천의과학대학교 길병원 호흡기내과) ;
  • 김유진 (가천의과학대학교 길병원 호흡기내과) ;
  • 경선영 (가천의과학대학교 길병원 호흡기내과) ;
  • 이상표 (가천의과학대학교 길병원 호흡기내과) ;
  • 박정웅 (가천의과학대학교 길병원 호흡기내과) ;
  • 정성환 (가천의과학대학교 길병원 호흡기내과)
  • Choi, Youngkwon (Graduate School of Medicine, Gachon University of Medicine and Science) ;
  • An, Chang Hyeok (Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center) ;
  • Kim, Yu Jin (Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center) ;
  • Kyung, Sun Young (Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center) ;
  • Lee, Sang Pyo (Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center) ;
  • Park, Jeong Woong (Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center) ;
  • Jeong, Sung Hwan (Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center)
  • 투고 : 2008.02.17
  • 심사 : 2008.07.07
  • 발행 : 2008.07.30

초록

연구배경: 잔여 흉막비후는 결핵성 흉막염 치료 후 흔히 나타날 수 있는 합병증 중의 하나이며, 이로 인해 호흡기능에 지장을 주는 경우가 있다. 이에 결핵성 흉막염 진단 시 흉수 내의 metalloproteinase (MMP)s와 tissue inhibitor of metalloproteinase (TIMP)s의 농도가 치료 후 잔여 흉막비후가 지속되는 지 예측할 수 있는 인자가 될 수 있는 지 알아보고자 하였다. 방 법: 2004년 1월부터 2005년 6월 사이에 흉수가 발견되어 입원한 환자를 대상으로 전향적 연구를 시행하였다. 진단 시 흉수의 분석을 통해 결핵성 흉막염, 부폐렴성 흉수, 악성 흉수, 여출액군으로 나누고, 환자의 혈청과 흉수에서 ELISA 방법을 이용하여 MMP-1, -2, -8, -9와 TIMP-1, -2를 측정하였다. 결핵성 흉막염의 경우 흉부엑스선검사로 항결핵제 치료 종결 시점과 마지막 추적 관찰시점에 잔여 흉막비후의 두께를 측정하여 잔여 흉막비후가 있는 군과 없는 군으로 나누었다. 결 과: 흉수가 발견되어 입원한 환자 중 제외 기준에 해당하는 환자를 제외하고 총 39명의 환자가 대상이 되었다. 이 중 결핵성 흉막염은 23명, 부폐렴성 흉수 7명, 악성 흉수 7명, 여출액 2명이었다. 결핵성 흉막염 환자 23명 중 본원에서 항결핵제 치료를 종료한 환자는 17명이었으며, 이 중 잔여 흉막비후가 없는 군은 10명(59%)이었으며, 잔여 흉막비후가 있는 군은 7명(41%)이었다. 잔여 흉막비후가 있는 군은 흉수 TIMP-1 ($41,405.9{\pm}9,737.3ng/mL$)이 잔여 흉막비후가 없는 군($29,134.9{\pm}8,801.8$)보다 의미있게 높았다(p=0.032). 치료 종료 후 평균 $8{\pm}5$개월의 추적관찰이 가능한 13명의 환자들에서, 마지막으로 촬영한 흉부 후전위 촬영에서 잔여 흉막비후가 없는 군은 11명(85%)이었고, 잔여 흉막비후가 있는 군은 2명(15%)이었다. 잔여 흉막비후가 있는 군은 흉수 TIMP-2 ($34.4{\pm}6.5ng/mL$)가 잔여 흉막비후가 없는 군($44.4{\pm}15.5$)보다 의미있게 낮았다(p=0.038). 결 론: 결핵성 흉막염의 잔여 흉막비후의 발생에 TIMP-1과 TIMP-2이 관여 될 수도 있을 것으로 추정된다.

Background: Residual pleural thickening (RPT) is the most frequent complication of tuberculous pleurisy (TP), and this can happen despite of administering adequate anti-tuberculous (TB) therapy. Yet there was no definite relation between RPT and other variables. The aim of this study was to examine matrix metalloproteinases (MMPs) and the inhibitors of metalloproteinases (TIMPs) and to identify the factors that can predict the occurrence of RPT. Methods: The patients with newly-detected pleural effusions were prospectively enrolled in this study from January 2004 to June 2005. The levels of MMP-1, -2, -8 and -9, and TIMP-1 and -2 were determined in the serum and pleural fluid by ELISA. The residual pleural thickness was measured at the completion of treatment and at the point of the final follow-up with the chest X-ray films. Results: The study included 39 patients with pleural fluid (PF). Twenty-three had tuberculous effusion, 7 had parapneumonic effusion, 7 had malignant effusion and 2 had transudates. For the 17 patients who completed the anti-TB treatment among the 23 patients with TP, 7 (41%) had RPT and 10 (59%) did not. The level of PF TIMP-1 in the patients with RPT ($41,405.9{\pm}9,737.3ng/mL$) was significantly higher than that of those patients without RPT ($29,134.9{\pm}8,801.8$) at the completion of treatment (p=0.032). In 13 patients who were followed-up until a mean of $8{\pm}5$ months after treatment, 2 (15%) had RPT and 11 (85%) did not. The level of PF TIMP-2 in the patients with RPT ($34.4{\pm}6.5ng/mL$) was lower than that of those patients without RPT ($44.4{\pm}15.5$) at the point of the final follow-up (p=0.038). Conclusion: The residual pleural thickening in TP might be related to the TIMP-1 and TIMP-2 levels in the pleural fluid.

키워드

참고문헌

  1. Eickelberg O, Sommerfeld CO, Wyser C, Tamm M, Reichenberger F, Bardin PG, et al. MMP and TIMP expression pattern in pleural effusions of different origins. Am J Respir Crit Care Med 1997;156:1987-92. https://doi.org/10.1164/ajrccm.156.6.9704112
  2. Hoheisel G, Sack U, Hui DSC, Huse K, Chan KS, Chan KK, et al. Occurrence of matrix metalloproteinases and tissue inhibitors of metalloproteinases in tuberculous pleuritis. Tuberculosis 2001;81:203-9. https://doi.org/10.1054/tube.2000.0276
  3. Jin HY, Lee KS, Jin SM, Lee YC. Vascular endothelial growth factor correlates with matrix metalloproteinase- 9 in the pleural effusion. Respir Med 2004;98:115-22. https://doi.org/10.1016/j.rmed.2003.09.002
  4. Kotyza J, Pesek M, Puzman P, Havel D. Progelatinase B/matrix metalloproteinase-9 proenzyme as a marker of pleural inflammation. Exp Lung Res 2004;30:297-309. https://doi.org/10.1080/01902140490276393
  5. Park KJ, Hwang SC, Sheen SS, Oh YJ, Han JH, Lee KB. Expression of matrix metalloproteinase-9 in pleural effusions of tuberculosis and lung cancer. Respiration 2005;72:166-75. https://doi.org/10.1159/000084048
  6. Iglesias D, Alegre J, Aleman C, Ruiz E, Soriano T, Armadans LI, et al. Metalloproteinaes and tissue inhibitors of metalloproteinase in exudative pleural effusions. Eur Respir J 2005;25:104-9. https://doi.org/10.1183/09031936.04.00010504
  7. Di Carlo A, Terracciano D, Mariano A, Macchia V. Matrix metalloproteinase-2 and matrix metalloproteinase- 9 type IV collagenases in serum of patients with pleural effusions. Int J Oncol 2005;26:1363-8.
  8. Light RW, MacGregor MI, Luchsinger PC, Ball WC Jr. Pleural effusion: the diagnostic separation of transudates and exudates. Ann Intern Med 1972;77:507-13. https://doi.org/10.7326/0003-4819-77-4-507
  9. Ocaña I, Martínez Vázquez JM, Segura RM, Fernandez de Sevilla T, Capdevila JA. Adenosine deaminase in pleural fluid: Test for diagnosis of tuberculous pleural effusion. Chest 1983;84:51-3. https://doi.org/10.1378/chest.84.1.51
  10. Light RW, Girad WM, Jenkinson SG, George RB. Parapneumonic effusions. Am J Med 1980;69:507-12. https://doi.org/10.1016/0002-9343(80)90460-X
  11. Lee BH, Jee HS, Choi JC, Park YB, An CH, Kim JY, et al. Therapeutic effect of prednisolone in tuberculous pleurisy: a prospective study for the prevention of the pleural adhesion. Tuberc Respir Dis 1999;46:481-8. https://doi.org/10.4046/trd.1999.46.4.481
  12. Kyung SY, Kim YJ, Lim YH, AN CH, Lee SP, Park JW, et al. Spontaneous resolution of residual pleural thickening in tuberculous pleurisy. Tuberc Repir Dis 2005; 59:69-76. https://doi.org/10.4046/trd.2005.59.1.69
  13. Kim YJ, Kim JH, Jeon HK, Kim MK, Jo YC, Kyung SY, et al. The expression of MMPs and TIMPs in IPF and NSIP. Tuberc Repir Dis 2006;61:447-55. https://doi.org/10.4046/trd.2006.61.5.447
  14. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999;274:21491-4. https://doi.org/10.1074/jbc.274.31.21491
  15. Murphy G, Docherty AJ. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol 1992;7: 120-5. https://doi.org/10.1165/ajrcmb/7.2.120
  16. Chang JC, Wysocki A, Tchou-Wong KM, Moskowitz N, Zhang Y, Rom WN. Effect of Mycobacterioum tuberculosis and its components on macrophages and the release of matrix metalloproteinases. Thorax 1996;51:306-11. https://doi.org/10.1136/thx.51.3.306
  17. O'Connell JP, Willenbrock F, Docherty AJ, Eaton D, Murphy G. Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem 1994;269:14967-73.
  18. Light RW, Lee YCG. Textbook of pleural diseases. 1st ed. New York: Oxford University Press Inc.; 2003.
  19. Cho JH, Nam JH, Lee KH, Yoon BK, Ryu JS, Kwak SM, et al. Matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 levels in exudative pleural effusions. Tuberc Respir Dis 2005;59:517-21. https://doi.org/10.4046/trd.2005.59.5.517
  20. Howard EW, Bullen EC, Banda MJ. Preferential inhibition of 72- and 92-kDa gelatinases by tissue inhibitor of metalloproteinases-2. J Biol Chem 1991;266:13070-5.
  21. Baragi VM, Fliszar CJ, Conroy MC, Ye QZ, Shipley JM, Welgus HG. Contribution of the C-terminal domain of metalloproteinases to binding by tissue inhibitor of metalloproteinases. C-terminal truncated stromelysin and matrilysin exhibit equally compromised binding affinities as compared to full-length stromelysin. J Biol Chem 1994;269:2692-7.
  22. Nguyen Q, Willenbrock F, Cockett MI, O'Shea M, Docherty AJ, Murphy G. Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A. Biochemistry 1994;33:2089-95. https://doi.org/10.1021/bi00174a015
  23. Stetler-Stevenson WG, Krutzsch HC, Liotta LA. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem 1989;264:17374-8.
  24. Chesler L, Golde DW, Bersch N, Johnson MD. Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases- 1. Blood 1995;86:4506-15.
  25. Kinoshita T, Sato H, Okada A, Ohuchi E, Imai K, Okada Y, et al. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem 1998;273:16098-103. https://doi.org/10.1074/jbc.273.26.16098