Presumptive Role of Neutrophilic Oxidative Stress in Oxygen-induced Acute Lung Injury in Rats

흰쥐에서 고농도 산소 흡입에 의한 급성 폐손상 시 호중구성 산화성 스트레스의 역할

  • Moon, Yongsuck (Department of Anatomy, Catholic University of Daegu, School of Medicine) ;
  • Kim, Jihye (Department of Physiology, Catholic University of Daegu, School of Medicine) ;
  • Lee, Young Man (Department of Physiology, Catholic University of Daegu, School of Medicine)
  • 문용석 (대구가톨릭대학교 의과대학교 해부학교실) ;
  • 김지혜 (대구가톨릭대학교 의과대학교 생리학교실) ;
  • 이영만 (대구가톨릭대학교 의과대학교 생리학교실)
  • Received : 2008.09.23
  • Accepted : 2008.11.10
  • Published : 2008.12.30

Abstract

Background: This study examined the role of neutrophilc oxidative stress in an $O_2-induced$ acute lung injury (ALI). Methods: For 48 h, experimental rats were exposed to pure oxygen (normobaric hyperoxia) in a plastic cage. Forty-eight hours after $O_2$ breathing, the rats were sacrificed and the parameters for ALI associated with neutrophilic oxidative stress were assessed Results: Normobaric pure oxygen induced ALI, which was quite similar to ARDS. The $O_2-induced$ neutrophilic oxidative stress was identified by confirming of the increase in lung myeloperoxidase, BAL neutrophils, malondialdehyde (MDA), cytosolic phospholipase $A_2$ ($cPLA_2$) activity in the lung, histological changes and BAL cytospin morphology. Conclusion: In part, ALI-caused by oxygen is affected by neutrophils especially by the generation of free radicals.

연구배경: 산소독에 의한 급성 폐손상에 대한 기전은 아직 확실히 알려져 있지 않다. 급성호흡곤란증후군에서 보이는 호중구의 산소기 생성에 따른 조직의 손상이 산소독에 의한 손상에서도 관여하는지를 확인하고자 하였다. 방 법: Plastic cage 내의 기압을 1기압으로 고정하고 흰쥐에게 순수한 산소를 48시간 호흡시킨 후 호중구가 폐장 내로 침윤함으로써 나타나는 급성 폐손상을 생화학적인 지표 및 형태학적인 관찰 등을 통하여 검사하였다. 결 과: 흰쥐에게 순수한 산소를 48시간 호흡하게 한 경우 폐부종, 호중구의 침윤, 폐장 내 MDA 및 $cPLA_2$ 활동도의 증가가 관찰되었고, 형태학적으로도 탐식구 특히 호중구의 침윤에 따른 폐장의 손상이 관찰되었다. 결 론: 산소독에 의한 급성폐손상의 기전은 고농도의 산소에 의한 산소기 생성이 그 원인으로 생각 되지만 산소기의 작용기전은 부분적으로 $cPLA_2$활성도 증가에 의한 호중구의 조직 내 침윤에 따른 이차적 산소기 형성이 그 원인으로 생각되며 시간이 경과할수록 호중구에 폐장 내 침윤에 따른 손상이 더 심해질 것으로 생각된다.

Keywords

References

  1. Hay WW Jr, Bell EF. Oxygen therapy, oxygen toxicity, and STOP-ROP trial. Pediatrics 2000;105:424-5. https://doi.org/10.1542/peds.105.2.424
  2. Crapo JD, Barry BE, Foscue HA, Shelburne J. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis 1980;122:123-43.
  3. Chabot F, Mitchell JA, Gutteridge JM, Evans TW. Reactive oxygen species in acute lung injury. Eur Respir J 1998;11:745-57.
  4. Guidot DM, Repine JE, Kitlowski AD, Flores SC, Nelson SK, Wright RM, et al. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. J Clin Invest 1995;96:1131-6. https://doi.org/10.1172/JCI118100
  5. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342:1334-49. https://doi.org/10.1056/NEJM200005043421806
  6. Brown RE, Jarvis KL, Hyland KJ. Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem 1989;180:136-9. https://doi.org/10.1016/0003-2697(89)90101-2
  7. Goldblum SE, Wu KM, Jay M. Lung myeloperoxidase as a measure of pulmonary leukostasis in rabbits. J Appl Physiol 1985;59:1978-85. https://doi.org/10.1152/jappl.1985.59.6.1978
  8. Carraway MS, Piantadosi CA, Jenkinson CP, Huang YC. Differential expression of arginase and iNOS in the lung in sepsis. Exp Lung Res 1998;24:253-68. https://doi.org/10.3109/01902149809041533
  9. Katsumata M, Gupta C, Goldman AS. A rapid assay for activity of phospholipase A2 using radioactive substrate. Anal Biochem 1986;154:676-81. https://doi.org/10.1016/0003-2697(86)90046-1
  10. Capellier G, Maupoil V, Boussat S, Laurent E, Neidhardt A. Oxygen toxicity and tolerance. Minerva Anestesiol 1999;65:388-92.
  11. Torbati D, Tan GH, Smith S, Frazier KS, Gelvez J, Fakioglu H, et al. Multiple-organ effect of normobaric hyperoxia in neonatal rats. J Crit Care 2006;21:85-93. https://doi.org/10.1016/j.jcrc.2005.09.057
  12. Roman K, Vladimíra M, Alexander C. Highly specific, simple and rapid method for the determination of malondialdehyde in blood using high-performance liquid chromatography. Clin Chem Lab Med 2002;40:1032-5. https://doi.org/10.1515/CCLM.2002.180
  13. Sukhotnik I, Coran AG, Greenblatt R, Brod V, Mogilner J, Shiloni E, et al. Effect of 100% oxygen on E-selectin expression, recruitment of neutrophils and enterocyte apoptosis following intestinal ischemia-reperfusion in a rat. Pediatr Surg Int 2008;24:29-35. https://doi.org/10.1007/s00383-007-2039-y
  14. Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B, et al. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol 2008;231:235-40. https://doi.org/10.1016/j.taap.2008.04.018
  15. Shasby DM, Fox RB, Harada RN, Repine JE. Reduction of the edema of acute hyperoxic lung injury by granulocyte depletion. J Appl Physiol 1982;52:1237-44. https://doi.org/10.1152/jappl.1982.52.5.1237
  16. Hybertson BM, Lee YM, Repine JE. Phagocytes and acute lung injury: dual roles for interleukin-1. Ann N Y Acad Sci 1997;832:266-73. https://doi.org/10.1111/j.1749-6632.1997.tb46253.x
  17. Lin Y, Jamieson D. Role of neutrophils in hyperbaric and normobaric oxygen toxicity. Pathophysiology 1995;2:9-16. https://doi.org/10.1016/0928-4680(95)00006-M
  18. Prudhomme JB, Ware LB. Acute lung injury and acute respiratory distress syndrome: mechanisms and potential new therapies. Drug Discov Today Dis Mech 2004;1:123-8. https://doi.org/10.1016/j.ddmec.2004.08.009
  19. Lee YM, Hybertson BM, Terada LS, Repine AJ, Cho HG, Repine JE. Mepacrine decreases lung leak in rats given interleukin-1 intratracheally. Am J Respir Crit Care Med 1997;155:1624-8. https://doi.org/10.1164/ajrccm.155.5.9154867
  20. Guidot DM. Endotoxin treatment increases lung mitochondrial scavenging of extramitochondrial superoxide in hyperoxia-exposed rats. Arch Biochem Biophys 1996;326:266-70. https://doi.org/10.1006/abbi.1996.0075
  21. Boyer CS, Bannenberg GL, Neve EP, Ryrfeldt A, Moldéus P. Evidence for the activation of the signal-responsive phospholipase A2 by exogenous hydrogen peroxide. Biochem Pharmacol 1995;50:753-61. https://doi.org/10.1016/0006-2952(95)00195-6