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Abstract. Having previously presented an article entitled “Further approximate optimum inspection intervals” 
in this Journal, here the author derives an alternative set of general explicit formulae using Cardan’s solution to 
a cubic equation and presents a modified heuristic algorithm for solving Baker's model. The examples show 
that this new alternative approximate solution procedure for determining near optimum inspection intervals is 
as accurate and computationally efficient as the one suggested in the previous article. Through the examples, 
the author also indicates the relative merits and demerits of the two algorithms. 

 
Keywords: Exponential Distribution, Inspection, Replacement, Cost, Profit, Machine. 
 
 

1.  INTRODUCTION 

Consider a single unit representing a manufacturing 
system composed of many components. In the following, 
the author will use the word “machine” to refer to such a 
single-unit or complex system. Now suppose that a ma-
chine follows the exponential failure distribution )(tF  

te λ−−=1  for a constant hazard λ > 0 and time t ≥ 0, 
and that failures can be revealed only by periodic in-
spection (or testing) and then replaced. Frequent inspec-
tion increases inspection costs while infrequent inspec-
tion leads to increasing lost production costs. Thus, an 
economically optimum inspection interval usually exists. 
Recent studies in which the basic profit model, proposed 
by Baker (1990), of periodically inspecting a machine 
has been extended, generalized or modified can be 
found in Leung (2005). Recent articles concerning in-
spection problems are Yang and Klutke (2001), Lam 
(1995, 2003), Cui et al. (2004) and Zequeria and Beren-
guer (2006).  

For easy reference, the author restates the essen-
tial equations of Baker’s model in the next section. In 
the rest of this article, he: (1) proposes an alternative 
near optimum solution procedure for Baker’s model; 
(2) gives three typical examples to show that this new 
alternative procedure is as accurate and computation-
ally efficient as the one put forward by Leung (2005); 
(3) gives the relative merits and demerits of the two 

algorithms; (4) concludes with a possible application 
of the procedure; and (5) shows the limited applicabil-
ity of a second or third degree Taylor series approxi-
mation for the factor x−e  arising in the maximum co-
ndition. 

2.  THE EXPECTED AND MAXIMUM PROFIT 
RATES, AND THE MAXIMUM CONDIT-
ION 

Let a be the profit per unit time while the machine is 
operating and b be the cost of replacement if the machine 
is found to have failed, where .0 , ≥ba  We assume that 
all replacements are equally expensive, that a failure com- 
pletely halts production until the next inspection and re-
placement, and that each replacement restores the ma-
chine to the as-good-as new state. Let c be the cost of 
each periodic inspection, where .0≥c  Now, suppose 
that the machine is inspected with periodic time T be-
tween two successive inspections. The expected profit 
rate (or per unit time) is given by Baker (1990): 
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The maximum condition of equation (1) is  
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,1e)1( dx axa −=+ −    (2.1) 
 

or equivalently the condition can be written as the loga-
rithmic form  
 

),1ln()1ln( dxx aa −=−+   (2.2) 
 

where aa Tx λ=  and .
b

cd
a −

=
λ

  

 
With ,0>−− cba

λ  Hariga (1996) showed the exis-
tence and uniqueness of the optimum inspection interval 

.aT  However, the author thinks that his deduction is not 
direct and complete for the situation under study. Thus, 
the author states Theorem 1 below and gives its proof in 
the Appendix. Through economic interpretations of ex-
pressions cba −−= λα  and ,ba −= λφ  the new proof also 
provides more insight into the model. 

 
Theorem 1. If 0>α  or equivalently ),( cba +> λ  

then there exists a unique finite opti-
mum interval Ta that maximizes the ex-
pected profit rate ).(Tz  Otherwise, aT  

,∞=  i.e. no inspections take place. 
 
The maximum profit rate is  
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The emphasis in this article is to find accurate ap-

proximate solutions aa Tx λ=  of equation (2.2) and then 
determine the maximum profit rate using equation (3). 

3.  MORE ACCURATE APPROXIMATE OP- 
TIMUM INSPECTION INTERVALS 

A third degree Taylor series approximation for ln 
(1+x) is given by 
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Vaurio (1994) used the accurate approximation  
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Equation (5.1) can be written as 
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Putting equation (5.2) into equation (2.2) yields a 
quadratic equation with the solution 
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Note that equation (5.3) corresponds to equation (8) 

in Vaurio (1994). 
The author deduces from equations (4) and (5.2) that 

the general form of approximation for ln(1+x) is given by 
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Equation (6.1) can be written as  
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In particular, putting equation (6.2) with l = 2 into 

equation (2.2), we can obtain equation (5.3). 
In general, putting equation (6.2) with l > 2 into 

equation (2.2) yields a cubic equation 
 

.0)1ln(6)1ln(23)2( 23 =−+−++− dlxdxxl lll   (7) 
 
The solution to equation (7) is given as follows: 
Equating the coefficients of terms with the same or-

der in equations (7) and (A3), we obtain 
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From equation (A5), we have 
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Since 04 32 <+ HG  (the proof is given in the Ap-

pendix), from equation (A7) we have 
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and from equations (A4) and (A6) we have 
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2
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In the Appendix, a brief discussion is given of the 

general solution of the cubic equation. For more details, 
see pp.131-133 in Tranter (1976).  
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Since xl is a near optimum value, from equation (2.1) 
we have 

 
.1e)1( dx lx

l −≅+ −  
 
The following two theorems provide conditions by 

which an heuristic algorithm, introduced below, is de-
vised. 

 
Theorem 2. g(xl) is a strictly decreasing function 

with respect to xl > 0, where 
 

.e)1()( lx
ll xxg −+=    (11) 

 
The proof of Theorem 2 is given in the Appendix. 
Figure 2 shows the curve of g(xl) versus .lx  A 

quick but quite inaccurate xa (especially for 1−d close to 0 
and 1) can be obtained from the enlarged Figure 2 which 
is attached at the end of the Appendix. 
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Figure 2. 

Theorem 3. xl is a strictly decreasing function with 
respect to l in the interval [2, 3]. 

The proof of Theorem 3 is given in the Appendix. 
Figure 3 shows the curve of xl versus l when 

,5940.0=d  see Example 1 below. 
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Figure 3. 

4.  AN HEURISTIC ALGORITHM 

The procedure the author proposes to solve equation 
(2.2) works as follows: 

 
(1)  To start, we compute xr using equation (5.3), i.e. 

let .2=l  

(2)  Compute xl and g(xl), correct to 4 significant fig-
ures, using equations (8) to (10) and (11) respec-
tively. 

(3)  When ,101)( 3−<+− dxg l  stop. 
(4)  When g(xl) < (or >) 1 − d, set l greater (or 

smaller) than the value assigned in step (2). 
This revision is due to Theorems 2 and 3. In 
practice, it is sufficient for the new l value to be 
heuristically chosen from the interval (2, 2.15). 
Then go to step (2). 

  
Equations (5.3) and (8) to (11) are simple enough to 

be solved using a portable programmable calculator, with 
which the near optimum inspection interval xl and the 
absolute error dxg l +−1)(  can be computed “with the 
push of a button” and no tables (such as Table I in Baker 
1990 and the enlarged Figure 2) have to be consulted. The 
algorithm is illustrated by the following three typical ex-
amples.  

Although xr always overshoots xa when d > 0.2642 
(see Table I in Vaurio 1994), step (1) initiates a good ap-
proximation. Consequently, step (2) usually iterates twice 
to give the optimum value to any desired degree of accu-
racy. 

 
Example 1 
Given that ;5940.0=d  hence 4060.01 =− d  and 

.9014.0)1ln( −=− d   
From Table I in Vaurio (1994), we obtain  
 

xa = 2 and .072.22 == rxx  
 
Using equation (11) with l = 2 yields  
 

.4060.03869.0e)072.21()( 072.2
2 <=+= −xg  

 
Next, set l = 2.1. Using equation (8), we obtain 
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Using equation (9), we obtain 
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Using equations (10) and (11) respectively, we have 

,02.2
1.0

151.55cos62.1122 o
1.2 =−=x  

 
and 
    

.4060.04002.0e)02.21()( 02.2
1.2 <=+= −xg  

We perform a fine adjustment for l, try l = 2.15 and 
obtain  

 
,06.53−=H  ,80.728=G  ,51.53 o=θ  

,997.115.2 =x  .4060.04068.0)( 15.2 <=xg  
 
Finally, we obtain .997.1≅ax  
 
Example 2 
Let λ = 0.01 per day, a = $1000 per day, b = $5000, 

.000,90$=c  Hence, ,9474.0=d  0526.01 =− d  and 
.945.2)1ln( −=− d  This is the third (extreme) ex-

ample solved in Baker (1990), from which we know 
that .682.4=ax   
Since ,05000000,90500001.0

1000 >=−−=α  a unique 
finite optimum Ta exists, by Theorem 1.   
First, setting l = 2, we have 
 

,085.5945.22
9

)945.2(4
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and 
 

.0526.00377.0e)085.51()( 085.5
2 <=+= −xg  

 
Next, setting l = 2.1, we obtain 
 

,23.141−=H  ,20.3060=G  ,91.51 o=θ  

,662.41.2 =x  .0526.00535.0)( 1.2 >=xg  
 

We perform a fine adjustment for l, try l = 2.09 or 
2.095 and respectively obtain  

 
,05.169−=H  ,92.4066=G  ,56.52 o=θ  

,697.409.2 =x  ,0526.00520.0)( 09.2 <=xg  
 

or 
  

,10.154−=H  ,96.3513=G  ,23.52 o=θ   

,680.4095.2 =x  .0526.00527.0)( 095.2 >=xg  
 
Finally, we obtain ,680.4≅ax  days 468≅aT  and 

803.8$
680.41

01.0)000,905000(1000)( =
+

×+−
≅aTz  from 

 
equation (3). 

      
Example 3 
Given that ;8009.0=d  hence 1991.01 =− d  and 

.614.1)1ln( −=− d   
From Table I in Vaurio (1994), we obtain  
 

xa = 3 and ,170.32 == rxx  
 
implying g(x2) = 0.175 < 0.1991. 
Next, we set l = 2.1 and obtain 
 

,60.122−=H  ,04.2581=G  ,98.53 o=θ  

,023.31.2 =x  .1991.01957.0)( 1.2 <=xg  
 
Third, we set l = 2.11 and obtain 
 

,63.103−=H  ,77.1992=G  ,61.53 o=θ  

,988.211.2 =x  .1991.02009.0)( 11.2 >=xg  
 
Finally, we obtain .988.2≅ax  

5.  CONCLUSIONS 

The three typical examples show that the formulae 
for ,lx  i.e. equations (8) to (10), are the most accurate 
approximation of ,ax  regardless of the different values of 

ax  and hence of the range of d. They also show that the 
general logarithmic form of approximation for determin-
ing near optimum inspection intervals is as accurate and 
computationally efficient as the general exponential form 
of approximation suggested in Leung (2005). Moreover, 
the author deems that the proposed algorithm is more 
efficient and less tedious than the one proposed by Hariga 
(1996) on p.356. 

Of these two methods of approximation, that of 
Leung (2005) is probably the better for ordinary users 
since they do not need to understand Cardan’s solution to 
use it. On the other hand, if the user are not mathemati-
cally shy, they are better off adopting the algorithm pro-
posed here because it usually requires less iterations. 

The proposed algorithm can also be applied to solve 
equation (7) or (12) in Ben-Daya and Hariga (1998). This 
algorithm incorporates fixed inspection and repair times 
and relaxes the strict assumption of no production during 
the failed (regarded as an out-of-control) state. It should 
be more efficient and less tedious to use than the algo-
rithm suggested on pp.484-485 of Ben-Daya and Hariga 
(1998) for solving equation (7) and be more accurate than 
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equations (13) to (15) in reaching an approximate solution 
of equation (12). The author have present results obtained 
from adopting the general logarithmic and exponential 
forms of approximation for solving Ben-Daya and Har- 
iga’s model in Leung (2008).        

Finally, it is worth pointing out the following. (a) 
The application of ,0223 ≅+− dxx aa  equation (6) in Chung 
(1993), for approximating xa is very limited because its 
roots have a physical meaning only if d ≤ 0.0740. The 
explanation for this is given in the Appendix. (b) When 
the author attempts a third degree Taylor series approxi- 
mation for ,xe−  equation (2.1) becomes a quartic (or biq- 
uadratic) equation .0632 234 ≅−+− dxxx aaa  Using Fer-
rari’s solution (see pp.133-135 in Tranter (1976)) to a 
quartic equation and letting ,5940.0=d  after some 
troublesome arithmetical manipulations, he obtains only 
one positive real root .305.1≅ax  This is a poor ap-
proximate since xa = 2 for the maximum condition 

.5940.01e)1( −=+ − ax
ax  With this counter example, we 

may conclude that a third degree Taylor series approxima-
tion is not only very inaccurate but also very tedious for 
determining near values of .ax  The author has not at-
tempted a fourth or higher degree Taylor series approxi-
mation because it is known that the general solution of an 
algebraic equation of a degree higher than the fourth is 
not possible.  
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APPENDIX 

1.  Proof of Theorem 1 

Differentiating equation (1) with respect to T and 
manipulating the resulting expression, we obtain 

 

,)(
d

)(d
2T

Tv
T
Tz

=    (A1) 

 
where  
 

,e)( TT TeTv λλ φλφα −− ++−=   (A2) 
 
and ,cba −−= λα  .ba −= λφ  
 
From equation (A2), it is evident that cv =−= αφ)0(  

and α−=∞)(v  (applying L’Hospita’s rule).  
Note that the behaviour of the function z(T) depends 

on the sign of its derivative which in turn depends on the 
sign of v(T). Differentiating equation (A2) with respect to 
T, we have 

 

.)( 2 TeT
Td
Tvd λφλ −−=  

To investigate the sign of ,d
)(d

T
Tv  we need to con-

sider the following three cases. 
Case (a): If 0>α  (i.e. the expected profit covers 

both the repair cost and inspection cost), then ,0>>αφ  
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and hence .0d
)(d <T

Tv  This implies that v (T) is strictly 
decreasing in the interval (0, ∞) from 0>=− cαφ  to 

.0<−α  Hence, there exists a unique finite optimum 
inspection interval, see Figure 1 below. As expected, the 
expected profit can cover both repair and inspection costs. 

Note that the condition for case (a) can be written as 
).( cba +> λ  

Note also that α = 0 is not included because if the 
costs are just covered, there is no point in wasting efforts 
on inspection and repair. 

Case (b): If 0>φ  and 0≤α  (i.e. the expected pr- 
ofit covers repair cost only), then .0d

)(d <T
Tv  This implies 

that v(T) is strictly decreasing in the interval [0, ∞) from 
0>=− cαφ  to .0≥−α  Hence, no solutions exist, i.e. 

there are no inspections at all, or the optimum inspection 
interval ,∞=aT  see Figure 1 below. This is also as ex-
pected since the machine's state cannot be revealed with-
out inspection, even though the expected profit covers the 
repair cost.  

Note that the condition for case (b) can be written as 
).( cbab +≤< λλ  

 

V (T )

0

-α

β -α

T a
T

V (T )
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Figure 1. Case(a) 
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Figure 1. Case(b) 

 
Case (c): If 0≤φ  (i.e. the expected profit covers 

neither cost), no solutions exist, i.e. .∞=aT  This result 
is intuitive because the machine is not profitable to use. 
Also, the result can be verified mathematically as follows: 
Consider 

cTzTz T −−=∞− − )e1()]()([ λφ  as 0)( =∞z  

< 0  as .1e <− Tλ  
 
This implies ),()( ∞< zTz  meaning .∞=T  Hence, 
∞=aT  for .0≤φ    
Note that the condition for case (c) can be written as 

.0 ba λ≤<  
 

2.  The general solution of the cubic equation 

The general form of the cubic equation is 
 

.033 32
2

1
3

0 =+++ axaxaxa           (A3) 
 
By writing 
 

,
0

1

a
ayx −=         (A4) 

 
the general cubic can be transformed into the stan-

dard form of the cubic equation 
 

,033 =++ GHyy    
 
where  
 

2
0

2
120

a

aaaH −=  and .3
0

3
12103

2
0 23

a

aaaaaaG +−=   (A5) 

 
Putting vuy +=  and uvH −=  into the standard 

form, we obtain 
 

Gvu −=+ 33  and .333 Hvu −=  
 
Hence, u3 and v3 can be regarded as the roots of the 

quadratic equation  
 

,032 =−+ HGzz  
 
so that 
 

2
4 32

3 HGGu ++−
=  and ,

2
4 32

3 HGGu +−−
=  

 
and a root of the standard cubic is given, through the 

relation ,vuy +=  by 
 

.
2

4
2
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1

323
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⎟
⎟
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⎞
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HGGHGGy  
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This solution was first published by Cardan and is 
usually known as Cardan’s solution although it was first 
invented by Tartaglia some four hundred years ago. 

 
Consider Cardan’s solution in more detail: 
(a) If ,04 32 >+ HG  the cubic has one real and 

two complex roots, namely 
 

,vu +  vu 2ωω +  and ,2 vu ωω +  
      

where u  and v  are the principal (or arithmetical) cube 
roots of u3 and v3 respectively, and )31(2

1 i+−=ω is a 
complex cube root of unity. 

 
(b) If ,04 32 =+ HG  the cubic has three real roots, 

two of which are equal, namely 
 

,2u  u−  and .u−  
 
(c) If ,04 32 <+ HG  the cubic has three real roots. 
 
To deal with this case, we put  
 

,cos2 θHy −=   (A6) 
 

into the standard cubic and yield 
 

.3cos)(2 3 GH −=− θ   (A7) 

 
In a numerical case, three values of θ can then be 

found to satisfy this equation. Nevertheless, it is sufficient 
to take the principal (or smallest) value of θ  in deter-
mining the optimum .ax  

3.  Proof of 04 32 <+ HG  with expressions H and 
G given by equation (8) 

Denote d−1  by d  and remember that 0ln <d  and 
.32 ≤≤ l  Then  

 
   32 4HG −<  

3

22

]3)2(ln2[
27

4     

]}1)2([ln2)2(ln6{

−−
−

<

−−−−⇔

lld

lldld
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)2(ln)2(ln      
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)2(ln24)2(ln24)2(ln36

222
3

16333
27
32

222

23242
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+−−−+

−+−−−⇔

−

lld

lldlld

lldlld

ldlldld

.)2(ln24)6()2(ln12           

)2(ln)2(ln0
232

222
3
4333

27
32

−−−−−

−+−<⇔ −

ldlld

lldlld
 

4.  Proof of Theorem 2 

Differentiating equation (11) with respect to ,lx  we 
have 

 

,e
d

)(d
lx

l
l

l x
x
xg −−=  

   
which is negative for .0>lx  Hence, g(xl) is a 

strictly decreasing function with respect to .lx  

5.  Proof of Theorem 3 

Implicitly differentiating equation (7) with respect to 
l and solving for l

xl
d
d  yields 

 

.
)1ln(26)2(3

)]1ln(2[
d
d

2

2

ldxxl
dxx

l
x

ll

lll

−++−
−+−

=  

 
Since ,0)1ln( <− d  from equation (7) we have  
 

0)1ln(23)2( 23 >−++− lll lxdxxl  

0)1ln(23)2( 2 >−++−⇒ ldxxl ll  

.0)1ln(26)2(3 2 >−++−⇒ ldxxl ll  
 
Putting equation (6.1) into equation (2.2), we obtain 
 

)1ln(
32

32

d
lx

xx

l

ll −−=
+

−  

)1ln(
2

2

dxl −−>⇒ ,  i.e. .0)1ln(22 >−+ dxl  

 
Consequently, 0d

d <l
xl  for ,0>lx  and xl is a stri- 

ctly decreasing function with respect to .l  

6.  Limitation of application of equation (6) in 
Chung (1993) 

A second degree Taylor series approximation for ex 
is given by 

 

.
2

1e
2xxx ++≅   (A8) 
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Putting 2
21e xx x +−≅−  in equation (2.1) yields a 

cubic equation  

 
,0223 ≅+− dxx aa   (A9) 

 
which is equation (6) in Chung (1993). 
Here, a0 = 1, ,3

1
1

−=a  a2 = 0, a3= 2d and hence, 
,9

1−=H  .2 27
2−= dG  

Cases (b) and (c):  
04 32 ≤+ HG  ⇔ 3

9
12

27
2 )(4)2( <−d  ⇔ 0740.0≤d  

gives roots with a physical meaning.   
Case (a): If ,0740.0>d  x has one and only one 

negative real root, which nobody can give a physical 
meaning. 

For example, let .5940.0=d  Then =+ 32 4HG  
,236.1 which is positive; i.e. case (a). Thus, there is only 

one real root .136.1−=y  Hence, .8027.0−≅ax  
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Enlarged Figure 2. 


