Study on Physical Properties of Domestic Species I: Sorption, Thermal, Electrical and Acoustic Properties of Pinus Densiflora

국산재의 응용물성연구 I: 소나무(Pinus densiflora)의 수분흡착성 및 열적·전기적·음향적 성질

  • Kang, Ho-Yang (College of Agriculture, Chungnam National University) ;
  • Byeon, Hee-Seop (College of Agriculture and Life Science, IALS, Gyeongsang National University) ;
  • Lee, Won-Hee (College of Agriculture and Life Science, Kyungpook National University) ;
  • Park, Byung-Soo (Forest Products Division, Korea Forestry Research Institute) ;
  • Park, Jung-Hwan (College of Agriculture and Life Science, IALS, Gyeongsang National University)
  • 강호양 (충남대학교 농업생명과학대학) ;
  • 변희섭 (경상대학교 농업생명과학대학, 농업생명과학연구원) ;
  • 이원희 (경북대학교 농업생명과학대학) ;
  • 박병수 (국립산림과학원 임산공학부) ;
  • 박정환 (경상대학교 농업생명과학대학, 농업생명과학연구원)
  • Received : 2007.12.12
  • Accepted : 2008.03.07
  • Published : 2008.05.25

Abstract

A series of the studies on the applied physical properties of domestic species have been conducted last three years. Pinus densiflora was one of the three species examined for the first year. Because the same apparatus and experimental procedures were used for all species, their results can be easily comparable. The experiments for sorption property were conducted with 20- and 80-mesh wood powder and resulted in their EMC's and sorption isotherms at various heating conditions. The thermal conductivity and diffusivity, and electric resistance and volumetric electric resistivity were measured with a thermal-wire device and a high electric resistance meter. The differences of the thermal and electric properties between quarter- and flat-sawn specimens were observed, which was partially attributed to their anatomical differences. An acoustic measurement system was used to evaluate dynamic MOE and internal friction. This paper provides the useful fundamental data for designing a wood structure, correcting a portable resistance-type moisture meter, and nondestructive testing wood.

국산재의 여러 가지 응용물성을 매년 3수종씩, 3년에 걸쳐 조사하였다. 첫 수종으로 우리나라의 대표 수종인 소나무를 사용하였다. 매년 동일한 장치와 실험조건으로 실험하였기 때문에 모든 수종에 대한 결과를 상호 비교할 수 있다. 수분흡착성 실험은 목분을 이용하였으며, 가열처리조건에 따른 평형함수율과 흡착등온곡선을 구하였다. 열전도율과 열확산률은 열선열전도장치를, 전기의 부피저항률과 저항은 고전기저항계를 이용하여 측정하였다. 정목재와 판목재의 열적 전기적 특성차이가 관찰되었는데 이는 해부학적 차이에 의한 것으로 보인다. 음향측정시스템을 사용하여 동적탄성률, 내부마찰을 측정하였다. 본 논문의 결과들은 목재구조물 설계, 휴대용 목재수분계 보정, 비파괴검사 등에 필요한 기본 자료를 제공한다.

Keywords

References

  1. 변희섭, 홍병화. 1997. 피아노향판용 아가티스재의 동역학적 성질. 한국가구학회지. 8(1/2): 10-15.
  2. 정우양, 박선행. 1999. 바이올린용 소재의 진동모드해석에 관한연구-절삭방향 및 밀도에 따른 공진주파수의 변화. 27(3): 1-6.
  3. 홍병화. 1983. 韓國産 響板用材의 振動的 性質에 관한 硏究. 慶尙大學校 論文集. 22: 31-59.
  4. 홍병화. 1985. 響板用 오동나무재의 動力學的 性質. 목재공학. 13(3): 34-40.
  5. Brown, J. H. et al. 1963. Mechanism of electrical conduction in wood. Forest Products Journal 13(19): 455-459.
  6. Brunauer, S. The Adsorption of Gases and Vapours. Clarendon Press, Oxford and Princeton University Press, Princeton (1945).
  7. Brunauer, S., P. H. Emmett, and E. Teller, 1938. J. Amer. chem. Soc. 60: 309-319. https://doi.org/10.1021/ja01269a023
  8. Bucur, V. 1995. Acoustic of Wood. CRC Press. pp. 14-144.
  9. Chirkova, J., I. Irbe, B. Andersons, and I. Andersone. 2006. Study of the structure of biodegraded wood using the water vapour sorption method. International Biodeterioration & Biodegradation. 58: 162-167. https://doi.org/10.1016/j.ibiod.2006.06.005
  10. Gillis, Christopher M., W. Stephens, and P. Peralta. 2001. Moisture meter correction factors for four Brazilian wood species. Forest Products Journal 51(4): 83-86.
  11. James, W. L. 1963. Electric moisture meters for wood. USDA Forest Service Research Note FPL-08, Forest Products Laboratory, Madison, WI.
  12. Kataoka, A. and T. Ono. 1976. The dynamic mechanical properties of Sitka spruce used for sounding boards. J. Japan Wood Res. 22(8): 436-443.
  13. Kollmann, F. and W. A. Cote. 1984. Principles of Wood Science and Technology. Springer-Verlag, New York.
  14. Lin, R. T. 1967. Review of the electrical properties of wood and cellulose. Forest Products Journal. 17(7): 61-66.
  15. Matsumoto, T. 1956. Studies on measurement on the dynamic modulus E of wood by the transverse vibration. J. Fac. Agri. Iwate Univ. 3: 46-61.
  16. Matsumoto, T. 1968. Studies on the dynamic modulus E of wood by transverse vibration 2 (The relationship of dynamic modulus of moisture content and of the dynamic modulus to the static modulus). J. Fac. Agri. Iwate Univ. 4(1): 73-78.
  17. Milota, M. and R. Gupta. 1996. Moisture meter correction factors for dahurian larch from the Russian Far East. Forest Products Journal. 46(6): 91-93.
  18. Milota, M. R. 1996. Calibration of moisture meters for western hardwood species. Forest Products Journal. 46(1): 39-42.
  19. Norimoto, M. 1982. Structure and properties of wood used for musical instruments I (On the selection of wood used for piano sound boards). J. Japan wood res. soc. 28(7): 407-413.
  20. Olek W., J. Weres, and R. Guzenda. 2003. Effects of Thermal Conductivity Data on Accuracy of Modeling Heat Transfer in Wood. Holzforschung. 57(3): 317-325. https://doi.org/10.1515/HF.2003.047
  21. Rice, Robert W. and R. K. Shepard 2004. The thermal conductivity of plantation grown white pine (Pinus strobus) and red pine (Pinus resinosa) at two moisture content levels. Forest Products Journal. 54(1): 92-94.
  22. Shupe, Todd F., Q. Wu, and I. Hartley. 2002. Calibration of moisture meters for southern hardwoods. Forest Products Journal. 52(7/8): 59-62.
  23. Siau, J. F. 1984. Transport Processes in Wood. Springer-Verlag, New York.
  24. Skaar, C. 1964. Some factors involved in the electrical determination of moisture gradient in wood. Forest Products Journal. 14(6): 239-243.
  25. Steinhagen, H. P. 1977. Thermal properties of wood, green or dry, from -40 to $100^{\circ}C$: A literature review. USDA Forest Service General Technical Report FPL-9, Forest Products Laboratory, Madison, WI.
  26. Suleiman, B. M., J. Larfeldt, B. Leckner, and M. Gustavsson. 1999. Thermal conductivity and diffusivity of wood. Wood Science and Technology 33: 465-473. https://doi.org/10.1007/s002260050130
  27. Suzuki, M. 1980. Relationship between specific gravity and decrement of dynamic Young's modulus with water, J. Japan Wood Res. Soc. 26(5): 299-304.
  28. USDA Forest Service FPL. 1999. Wood Handbook: Wood as an Engineering Material. Forest Prod. Soc., Madison, WI.
  29. Uyemura, T. 1960. Dielectrical properties of woods as the indication of the moisture. Rep. Bul. Govt. For. Expt. Sta. No.119: 95-172, Tokyo, Japan.
  30. Wenger, G. and P. Bois. 1997. Evaluation of Electric Moisture Meters on Kiln-Dried Lumber. Forest Products Journal. 47(6): 60-62.
  31. 岡野 健. 1991. 木材の音響的性質. 木材學會誌. 37(11): 991-998.
  32. 高分子學會(編). 1972. 高分子と水分.(고분자와 수분) 幸書房.(Japan).
  33. 鈴木孝臣, 金子克美. 1995. 非晶質固體中のナノスペー スの構造解析. (비결정질 고체중의 나노스페이스의 구조해석). 表面. 33(3): 157-163 (Japan).
  34. 伏谷賢美. 1985. 木材の物理. 文永堂. 33-34 (Japan).
  35. 盛岡良雄. 1990. 多孔体の細孔俓分布と細孔の網目構造.-吸着法による解釋-(다공체의 세공경분포와 세공의 망목구조-흡착법에 의한 해석-). 表面. 28(8): 598-607 (Japan).
  36. 矢野浩之, 山田 正. 1989. ピアノ響板用シトカスプルース材放射方向の音響特性. 木材學會誌. 31(3): 222-230.
  37. 矢野浩之, 松岡一郞, 椋代純輔. 1992. バイオリン用材の音響的性質. 木材學會誌. 38(2): 122-127.
  38. 深田榮一. 1950. ピアノ響板用木材の振動的性質. 科學. 20: 568.
  39. 深田榮一. 1951. 樂器用木材の振動的性質. 疲勞による木材振動損失の變化. 小林理硏報告. pp. 1-278.
  40. 深田榮一. 1956. 木材の振動的性質. 木材工業. 8: 152-155.
  41. 田中千秋, 中尾哲也, 高橋 徹. 1987. 木材の音響特性. 木材學會誌. 33(10): 811-817.
  42. 秋山 朗. 1947. 木材の振動竝びに音響的性質に就いて. 東大理工硏究. 1: 38.