TiO2 담지 스테인리스 강 섬유 광촉매 제조 및 광촉매 활성 평가

Fabrication of TiO2 Impregnated Stainless Steel Fiber Photocatalyts and Evaluation of Photocatalytic Activity

  • 송선정 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 김경석 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 김경환 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 이휘지 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 조동련 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단) ;
  • 김종범 ((주)빛과환경 환경기술연구소) ;
  • 박희주 ((주)빛과환경 환경기술연구소) ;
  • 손호경 (시드니공과대학교 환경공학부) ;
  • 김종호 (전남대학교 응용화학공학부, BK21 기능성나노신화학소재사업단)
  • Song, Sun-Jung (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Kyoung Seok (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Kyung Hwan (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Li, Hui Jie (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Cho, Dong Lyun (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Jong Beom (Photo & Environment Technology Co, Ltd.) ;
  • Park, Hee Ju (Photo & Environment Technology Co, Ltd.) ;
  • Shon, Hokyong (Faculty of Engineering, University of Technology, Sydney) ;
  • Kim, Jong-Ho (Center for Functional Nano Fine Chemicals & School of Applied Chemical Engineering, Chonnam National University)
  • 투고 : 2008.10.01
  • 심사 : 2008.10.17
  • 발행 : 2008.12.10

초록

수처리에 있어서 분말 $TiO_2$ 광촉매가 안고 있는 문제점을 극복하기 위하여 스테인리스 강 섬유를 지지체로 한 $TiO_2$ 담지 광촉매($TiO_2/SSF$)를 제조하였다. 초음파 세척기를 이용하여 담지된 $TiO_2$의 부착강도를 살펴보았으며, 메틸렌블루와 포름산 분해실험을 통하여 광촉매 활성을 평가하였고, 대장균과 비브리오균에 대한 살균실험을 통하여 살균능력을 평가하였다. 담지된 $TiO_2$는 30 min간의 초음파 처리 후에도 95% 이상이 남아 있을 정도로 강한 부착력을 보였으며, UV 하에서 60%의 메틸렌블루와 38%의 포름산을 1 h 만에 각각 분해시키는 광촉매 활성을 보였고, 대장균과 비브리오균에 대하여 99.9% 이상의 높은 살균능력을 보였다. 포름산 분해의 경우에는 산화제를 첨가하면 분해율이 증가하였으며, 특히 과산화수소를 첨가할 경우에는 분해율이 1 h 만에 80%로 증가하였다.

$TiO_2$ impregnated stainless steel fiber photocatalysts ($TiO_2/SSF$) were fabricated to overcome inherent problems of powdery $TiO_2$ photocatalysts in water treatment. Adhesion strength of the impregnated $TiO_2$ was examined using an ultrasonic-cleaner. Photocatalytic activity was evaluated through decomposition experiment of methylene blue and formic acid. Bactericidal efficiency was evaluated through sterilization experiment of E. Coli and Vibrio Vulnificus. Adhesion strength of the impregnated $TiO_2$ was so high that more than 95% was left over even after the treatment in an ultrasonic-cleaner for 30 min. Methylene blue and formic acid were decomposed as much as 60% and 38% of the initial concentration and more than 99.9% of E. Coli and Vibrio Vulnificus were killed after 1 hour exposure to the prepared photocatalyst under UV irradiation. In the case of decomposition of formic acid, decomposition ratio increased if oxidants were added. Especially the decomposition ratio increased as high as 80% when hydrogen peroxide was added as an oxidant.

키워드

참고문헌

  1. J. J. Rook, J. Water Treat. Exam., 23, 234 (1974).
  2. E. Brillasa, E. Mur, R. Sauleda, L. Sànchez, J. Peral, X. Domènech, and J. Casado, App. Catal. B: Environ., 16, 31 (1998). https://doi.org/10.1016/S0926-3373(97)00059-3
  3. R. H. Ching and Y. S. Hung, J. Hazar. Mater., 41, 47 (1995). https://doi.org/10.1016/0304-3894(94)00093-V
  4. R. Vencatadri and R. W. Peter, Haz. Waste & Haz. Mater., 10, 107 (1993). https://doi.org/10.1089/hwm.1993.10.107
  5. C. Minero, E. Pelizzetti, P. Pichat, M. Sega, and M. Vincenti, Environ. Sci. Technol. 29, 2226 (1995). https://doi.org/10.1021/es00009a012
  6. K. Honda and A. Fujishima, Nature, 238, 30 (1972).
  7. T. Kawai and T. Sakata, Nature, 286, 474 (1980). https://doi.org/10.1038/286474a0
  8. C. Wei, W. Y. Lin, Z. Zainal, N. E. Willams, K. Zhu, A. P. Kruzic, R. L. Smith, and K. Rajeshwar, Environ. Sci. Technol., 28, 934 (1994). https://doi.org/10.1021/es00054a027
  9. Y. Kuboto, T. Shuin, C. Kawasaki, M. Hosaka, H. Kitamura, R. Cai, H. Sakai, K. Hashimoto, and A. Fujishima, Br. J. Cancer, 70, 1107 (1994). https://doi.org/10.1038/bjc.1994.456
  10. Y. Takahashi, K. Mita, H. Toyoki, and M. J. Kume, Mater. Sci., 24, 243 (1989). https://doi.org/10.1007/BF00660961
  11. K. Kato, A. Tsuzuki, Y. Totii, H. Taoda, T. Kato, and Y. Butsugan, J. Mater. Sci., 30, 837 (1995). https://doi.org/10.1007/BF00356349
  12. A. L. Pruden and D. F. Ollis, J. Catal., 82, 404 (1983). https://doi.org/10.1016/0021-9517(83)90207-5
  13. A. L. Pruden and D. F. Ollis, Environ. Sci. Technol., 17, 628 (1983). https://doi.org/10.1021/es00116a013
  14. D. L. Cho, H. Min, J.-H. Kim, G.-S. Cha, G.-S. Kim, B. H. Kim, and S.-H. Ohk, J. Ind. Eng. Chem., 13, 434 (2007).
  15. K. Sunada, T. Watanabe, and K. Hashimoto, J. Photochem. Photobiol. A: Chemistry, 156, 227 (2003). https://doi.org/10.1016/S1010-6030(02)00434-3
  16. E. A. Barringer and H. K. Bowen, Langmuir. 1, 414 (1985). https://doi.org/10.1021/la00064a005
  17. R. S. Sonawane, S. G. Hegde, and M. K. Dongare, Mater. Chem. and Phy., 77, 744 (2002).
  18. J.-H. Kim, D.-L. Cho, B.-C. Choi, and S.-J. Song, Proc. Application of TiO2 Photocatalyst in Water Treatment, 7th Intern. Confer. on Ecomater., 7. 3-8, Singapore (2005).
  19. J. D. Oliver, Vibrio vulnificus. In: Foodborne Bacterial Pathogens, ed. M. P. Doyle, 569. Marcel Dekker, New York (1989).