A Study on N-Arylation of Indole Using Copper Nitrate or Copper Carbonate as a Catalyst

Copper Nitrate와 Copper Carbonate를 촉매로 이용한 Indole의 N-Arylation 연구

  • Lee, Jun Young (Department of Chemical System Engineering, Keimyung University) ;
  • Yang, Min Ho (Department of Chemical System Engineering, Keimyung University) ;
  • Paik, Seung Uk (Department of Chemical System Engineering, Keimyung University)
  • 이준영 (계명대학교 공과대학 화학시스템공학과) ;
  • 양민호 (계명대학교 공과대학 화학시스템공학과) ;
  • 백승욱 (계명대학교 공과대학 화학시스템공학과)
  • Received : 2008.08.25
  • Accepted : 2008.09.27
  • Published : 2008.12.10

Abstract

N-Arylation of indole with aryl iodides has been achieved by employing copper nitrate or copper cabonate as a catalyst, which might be more practical and economical over any other copper- or palladium-based catalysts for industrial applications. N,N'-dimethylethylenediamine was found to be the most effective with copper nitrate catalyst systems, while ethylenediamine was the most active with copper carbonate.

N-Arylation에 대한 경제적이고 실용적인 촉매시스템을 찾기 위하여 indole을 이용한 다양한 반응조건에서 실험이 수행되었으며, 결과적으로 본 연구에서 처음 시도한 copper nitrate와 copper cabonate가 다른 copper계 촉매나 palladium 촉매에 유사하거나 더 우수한 반응성을 보여주었다. Copper nitrate 촉매를 사용하는 경우에는 다양한 리간드 중에서 N,N'-dimethylethylenediamine 리간드가 더 효과적이었으며 copper cabonate 계에서는 ethylenediamine 리간드가 더 적합한 것으로 판명되었다.

Keywords

References

  1. F. He, B. M. Foxman, and B. B. Snider, J. Am. Chem. Soc., 120, 6417 (1998) https://doi.org/10.1021/ja9809408
  2. J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, and M. Lemaire, Chem. Rev., 102, 1359 (2002) https://doi.org/10.1021/cr000664r
  3. T. Manifar, S. Rohani, T. P. Bender, H. B. Goodbrand, R. Gaynor, and M. Saban, Ind. Eng. Chem. Res., 44, 789 (2005). https://doi.org/10.1021/ie0493513
  4. M. Sainsbury, Tetrahedron, 36, 3327 (1980) https://doi.org/10.1016/0040-4020(80)80185-2
  5. S.V. Ley, and A. W. Thomas, Angew. Chem. Int. Ed., 42, 5400 (2003) https://doi.org/10.1002/anie.200300594
  6. G. R. Martinez, K. A. M. Walker, D. R. Herschfield, J. J. Bruno, D. S. Yang, and P. J. Moloney, J. Med. Chem., 35, 620 (1992) https://doi.org/10.1021/jm00082a002
  7. P. Lopez-Alvarado, C. Avandano, and J. C. Menendez, J. Org. Chem., 61, 5865 (1996) https://doi.org/10.1021/jo960566z
  8. H. M. Lee and S. P. Nolan, Org. Lett., 2, 2053 (2000) https://doi.org/10.1021/ol005956t
  9. F. Ullmann, Ber. Dtsch. Chem. Ges. 36, 2382 (1903). https://doi.org/10.1002/cber.190303602174
  10. A. Klapars, J. C. Antilla, X. Huang, and S. L. Buchward, J. Am. Chem. Soc., 123, 7727 (2001). https://doi.org/10.1021/ja016226z
  11. R. J. Sorenson, Org. Chem., 65, 7747 (2000) https://doi.org/10.1021/jo000614m
  12. G. I. Elliott and J. P. Konopelski, Org. Lett. 2, 3055 (2000) https://doi.org/10.1021/ol006271w
  13. J. C. Antilla and S. L. Buchwald, Org. Lett., 3, 2077 (2001) https://doi.org/10.1021/ol0160396
  14. S. K. Kang, D. H. Kim, and J. N. Park, Synlett, 3, 427 (2002)
  15. M. Wolter, A. Klapars, and S. L. Buchwald, Org. Lett., 3, 3803 (2001) https://doi.org/10.1021/ol0168216