A Study on Adsorption Characteristics of Benzene over Activated Carbons Coated with Insulating Materials and Desorption by Microwave Irradiation

절연물질이 코팅된 활성탄의 벤젠 흡착특성 및 마이크로파에 의한 탈착에 관한 연구

  • Kim, Ki-Joong (Department of Chemical Engineering, Sunchon National University) ;
  • Ahn, Ho-Geun (Department of Chemical Engineering, Sunchon National University)
  • Received : 2008.06.06
  • Accepted : 2008.07.17
  • Published : 2008.08.10

Abstract

In order to regenerate the activated carbon polluted by volatile organic compounds (VOCs) using microwave, adsorption and desorption characteristics of benzene over activated carbon (AC) coated with insulating materials were investigated. Physical characteristics of activated carbon and insulator-coated ACs were investigated by means of $N_2$ gas adsorption and scanning electron microscopy (SEM). The amount of VOC adsorbed showed a positive relationship with the specific surface area of the ACs, and spark discharge over insulator-coated ACs did not occur. Potassium silicate (PS) was the best binder for coating of insulating materials on AC. Amount of benzene desorbed by microwave irradiation was dependent on output power of microwave. Nearly same performance was obtained even though the adsorption-desorption operation under microwave irradiation was repeated 5 times. Finally, it was known that the microwave heating was a very effective mean for regenerating the polluted AC.

마이크로파를 이용하여 휘발성유기화합물(VOCs; Volatile Organic Compounds)로 오염된 활성탄을 재생하기 위하여, 절연물질로서 활석(Talc)과 Ni-Zn ferrite를 각각 활성탄에 코팅하여 벤젠의 흡착 및 탈착 특성을 조사하였다. 절연물질이 코팅된 활성탄의 물리적 특성 및 표면상태는 질소가스 흡착장치와 주사전자현미경(SEM)을 이용하여 각각 확인하였다. 비표면적과 벤젠에 대한 흡착량은 비례관계를 보였고, 활성탄에 활석이나 Ni-Zn ferrite를 코팅하면 마이크로파에 의한 불꽃방전을 억제할 수 있었다. 활성탄에 절연물질을 코팅하기 위해 사용한 바인더는 PS (potassium silicate)가 벤젠에 대한 흡착성능이 가장 우수한 것으로 나타났다. 마이크로파 출력에 따른 탈착량은 출력에 비례하는 경향을 보였고, 연속되는 흡착과 탈착과정이 5회 반복되더라도 재현성이 충분히 나타났다. 결과적으로 VOCs로 오염된 폐활성탄의 재생방법으로서, PS를 바인더로 사용하여 활석이나 Ni-Zn ferrite를 활성탄에 코팅하여 마이크로파로 탈착시키면 효과적임을 알 수 있었다.

Keywords

References

  1. H.-S. Kim, Y.-S. Park, and B.-M. Min, J. of KSEE, 23, 1979 (2001)
  2. C. L Chuang, P. C Chiang, and E. E. Chang, Chemosphere, 53, 17 (2003) https://doi.org/10.1016/S0045-6535(03)00357-6
  3. W. Jin and S. Zhu, Chem. Eng. Technol., 23, 151 (2000) https://doi.org/10.1002/(SICI)1521-4125(200002)23:2<151::AID-CEAT151>3.0.CO;2-#
  4. S.-W. Kang, S.-S. Suh, and B.-H. Min, J. Korean Ind. Eng. Chem., 17, 201 (2006)
  5. P. Di. and D. P. Y. Chang, Air & Waste Management Association, 89th Annual Conference and Exhibition, Nashville, Tennessee, USA, June 23-28, 96-RA106.02 (1996)
  6. P. S. Schmidt and J. R. Fair, Waste Management, 14, 3 (1994) https://doi.org/10.1016/0956-053X(94)90016-7
  7. F. Delage, P. Pre, and P. l. Cloirec, J. Environ. Eng., 125, 1160 (1999) https://doi.org/10.1061/(ASCE)0733-9372(1999)125:12(1160)
  8. C. O. Ania, J. A. Menendez, J. B. Parra, and J. J. Pis, Carbon, 42, 1383 (2004) https://doi.org/10.1016/j.carbon.2004.01.010
  9. K.-J. Kim, C.-S. Kang, Y.-J. You, M.-C. Chung, M.-W. Woo, W.-J Jeong, and H.-G. Ahn, Catal. Today, 111, 223 (2006) https://doi.org/10.1016/j.cattod.2005.10.030
  10. 小林悟, 烏.幸弘, 長野義信, 環境管理, 40, 31 (2004)