Synthesis of Multi-Walled Carbon Nanotube/Polystyrene (MWCNT/PS) Composites by Solution Process and Their Thermal Behavior

용액공정을 이용한 다중벽 탄소 나노튜브/폴리스티렌(MWCNT/PS) 복합체 합성 및 열적 거동

  • 텡다용 (대구대학교 공과대학 화학공학과) ;
  • 신영환 (대구대학교 공과대학 화학공학과) ;
  • 권영환 (대구대학교 공과대학 화학공학과)
  • Received : 2008.05.25
  • Accepted : 2008.07.01
  • Published : 2008.08.10

Abstract

Multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites with various MWCNT contents were prepared by using a solution process with an aid of surfactant. Particularly, PS's with 3 different molecular weights (${\bar{M}}_n$ = 101500 g/mole for PS-1, ${\bar{M}}_n$ = 89900 g/mole for PS-2, and ${\bar{M}}_n$ = 85000 g/mole for PS-3) were used in this study. Thermal behavior of these composites was examined by using an oscillator rheometer at $210^{\circ}C$ and $180^{\circ}C$, of above and below the critical flow temperature ($T_{cf}{\sim}195^{\circ}C$) of PS matrix, respectively. The storage and loss modulus, and the complex viscosity of these composites increased with increasing MWCNT content at both temperatures. Largest increases in the frequency-dependent moduli and complex viscosity were observed between 2 wt% and 5 wt% of MWCNTs at $210^{\circ}C$ and $180^{\circ}C$. Only the composite at $210^{\circ}C$ showed the rheological phase transition from a viscous-dominant to an elastic-dominant behavior of the composites at a certain MWCNT content. The MWCNT content at the rheological phase transition of MWCNT/PS composites generally increased with decreasing molecular weight of PS, and was measured to be 3.5 wt% for MWCNT/PS-1, 3.2 wt% for MWCNT/PS-2, and 3.0 wt% for MWCNT/PS-3 composites.

본 연구에서는 다양한 조성의 다중벽 탄소 나노튜브/폴리스티렌 복합체들을 유화제를 이용한 용액공정을 이용하여 제조하였다. 이때, 분자량이 다른 3종의 폴리스티렌(PS-1 : ${\bar{M}}_n$ = 101500 g/mole, PS-2 : ${\bar{M}}_n$ = 89900 g/mole, PS-3 : ${\bar{M}}_n$ = 85000 g/mole)을 사용하였다. 복합체에서 매트릭스로 사용된 폴리스티렌의 임계흐름온도($T_{cf}{\sim}195^{\circ}C$) 이상과 이하인 $210^{\circ}C$$180^{\circ}C$에서의 열적 거동을 동적 유변측정기를 이용하여 측정하였다. 복합체의 저장 탄성율, 손실탄성율 및 용융점도는 복합체내에서 다중벽 탄소 나노튜브 함량이 증가함에 따라 증가하였으며, 용융점도의 경우에는 다중벽 탄소 나노튜브 함량이 2 wt%에서 5 wt% 사이에서 가장 큰 증가가 관찰되었다. $210^{\circ}C$의 유변특성 거동에 의하면, 특정 다중벽 탄소 나노튜브 함량에서 복합체의 점성 특성이 탄성특성으로 전이되는 현상이 관찰되었으며, 이때 다중벽 탄소 나노튜브 함량은 MWCNT/PS-1, MWCNT/PS-2 및 MWCNT/PS-3 조성에 대해 각각 3.5 wt%, 3.2 wt 및 3.0 wt%를 나타내었다.

Keywords

References

  1. H. C. Zeng, in Handbook of Organic-Inorganic Hybird Materials and Nanocoomposites Vol. 2, H. S. Nalwa Ed., pp.151, American Scientific Pubilisher, Los Angeles (2003)
  2. C. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology, p. 114, Wiley, New Jersey (2003)
  3. J. W. Kang and H. J. Hwang, J. Korean Phys. Soc., 46, 875 (2005)
  4. J. W. Jang, S. H. Kim, C. E. Lee, T. J. Lee, C. J. Lee, H. S. Kim, E. H. Kim, and S. J. Noh, J. Korean Phys. Soc., 42, S985 (2003)
  5. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl Phys. Lett., 76, 2868 (2000) https://doi.org/10.1063/1.126500
  6. J. P. Salvetat, A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro, Phys. Rev. Lett., 82, 944 (1999) https://doi.org/10.1103/PhysRevLett.82.944
  7. L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett., 73, 1197 (1998) https://doi.org/10.1063/1.122125
  8. E. S. Choi, J. S. Brooks, D. J. Eaton, M. S. Al-Haik, M. Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen, J. Appl. Phys., 94, 6034 (2003) https://doi.org/10.1063/1.1616638
  9. M. S. P. Shaffer, X. Fan, and A. H. Windle, Carbon, 36, 1603 (1998) https://doi.org/10.1016/S0008-6223(98)00130-4
  10. P. Potschke, A. R. Bhattacharyya, and A. Janke, Eur. Polym. J., 40, 137 (2004) https://doi.org/10.1016/j.eurpolymj.2003.08.008
  11. S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. S. Jhon, Macromol. Rapid Commun., 24, 1070 (2003) https://doi.org/10.1002/marc.200300089
  12. A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler, Chem. Mater., 15, 3198 (2003) https://doi.org/10.1021/cm020975d
  13. Y. Lin, A. M. Rao, B. Sadanadan, E. A. Kenik, and Y. P. Sun, J. Phys. Chem. B, 106, 1294 (2002) https://doi.org/10.1021/jp013501v
  14. S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes, Carbon, 41, 797 (2003) https://doi.org/10.1016/S0008-6223(02)00405-0
  15. J. L. Bahr and J. M. Tour, J. Mater. Chem., 12, 1952 (2002) https://doi.org/10.1039/b201013p
  16. E. T. Thostenson and T. W. Chou, J. Phys. D: Appl. Phys., 35, L77 (2002) https://doi.org/10.1088/0022-3727/35/16/103
  17. T. Satio, K. Matsushige, and K. Tanake, Physica B, 323, 208 (2002)
  18. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schelte, Chem. Phys. Lett., 370, 820 (2003) https://doi.org/10.1016/S0009-2614(03)00187-8
  19. P. Poulin, B. Vigolo, and P. Launois, Carbon, 40, 1741 (2002) https://doi.org/10.1016/S0008-6223(02)00042-8
  20. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett., 73, 3842 (1998) https://doi.org/10.1063/1.122911
  21. S. J. V. Frankland and V. M. Harik, Surf. Sci., 86, 2079 (2002)
  22. S.-D. Park, D.-H. Han, D. Teng, Y. Kwon, and G.-Y. Choi, J. Korean Phys. Soc., 48, 476 (2006)
  23. G.-Y. Choi, H.-G. Kim, Y.-H. Kim, C.-W. Seo, J.-H. Choi, D.-H. Han, D.-H. Oh, and K.-E. Min, J. Appl. Polym. Sci., 86, 917 (2002) https://doi.org/10.1002/app.11012
  24. A. T. Mutel and M. R. Kamal, in Two Phase Polymer Systems, A. Utracki Ed. pp. 305, Carl Hanser, New York (1991)
  25. T. Kitano, T. Kataoka, and Y. Nagatsuka, Rheol. Acta., 23, 20 (1984) https://doi.org/10.1007/BF01333872
  26. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941) https://doi.org/10.1063/1.1750906
  27. N. Nakayama and E. R. Harrell, in Current Topics in Polymer Science, vol. II: Rheology and Polymer Processing/Multiphase Systems, R. M. Ottenbrite, L. A. Utracki, and S. Inoue Eds. pp. 149, Carl Hanser, New York (1987)
  28. C. D. Han and K. W. Lem, Polym. Eng. Rev., 2, 135 (1983)
  29. H. K. Chuang and C. D. Han, J. Appl. Polym. Sci., 29, 2205 (1984) https://doi.org/10.1002/app.1984.070290625
  30. C. D. Han and J. K. Kim, Macromolecules, 22, 383 (1989) https://doi.org/10.1021/ma00191a071
  31. D. U. Ahn and S.-Y. Kwak, Macromol. Mater. Eng., 286, 17 (2001) https://doi.org/10.1002/1439-2054(20010101)286:1<17::AID-MAME17>3.0.CO;2-5
  32. C. Liu, J. Zhang, J. He, and G. Hu, Polymer, 44, 7529 (2003) https://doi.org/10.1016/j.polymer.2003.09.013
  33. M. Abdel-Goad and P. Potschke, J. Non-Newtonian Fluid Mech., 128, 2 (2005) https://doi.org/10.1016/j.jnnfm.2005.01.008
  34. P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002) https://doi.org/10.1016/S0032-3861(02)00151-9