DOI QR코드

DOI QR Code

방사배수 압밀 중 위치별 간극수압 측정을 통한 투수계수와 관련물성치의 결정방법

Evaluation of Permeability and Related Soil Characteristics Based on Pore Pressure Measurement during Consolidation by Radial Drainage

  • 윤찬영 (강릉대학교 토목공학과) ;
  • 천성호 (서울대학교 공학연구소) ;
  • 정충기 (서울대학교 건설환경공학부) ;
  • 이원택 (호남대학교 토목환경공학화)
  • 투고 : 2007.06.11
  • 심사 : 2007.11.27
  • 발행 : 2008.01.31

초록

본 연구에서는 압밀 중에 위치별 간극수압의 측정을 통하여 시료 내 여러 위치에서 투수계수를 산정할 수 있는 이론해를 제시하였으며, 이를 바탕으로 간극비 및 체적압축계수를 산정할 수 있는 방법을 제안하였다. 또한 여러 위치에서 간극수압을 측정할 수 있는 방사내측배수가 가능한 대형압밀시험기를 제작하고 카올리나이트를 이용하여 압밀시험을 실시하였다. 시험결과로부터 압밀 중 투수계수, 간극비, 체적압축계수의 변화 및 시료 내 위치별 분포를 평가하였으며, 압밀완료 후 시료의 함수비 측정으로 평가된 값들과의 비교를 통하여 실험결과의 신뢰성을 검증하였다. 실험결과 투수계수, 체적압축계수, 간극비는 압밀 중 감소하며, 재하단계에 따라서도 감소함을 확인하였다. 또한 그 분포형태는 배수면 근처에서 가장 작고 배수거리에 따라 증가하며 비배수 경계면 근처에서는 오히려 약간 작은 것으로 나타났다.

In this research, an analytical solution for the coefficient of permeability of soils during consolidation is suggested. The pore pressure and the flow rate measurements at different locations during consolidation are utilized. The void ratio and volume compressibility of soils under consolidation are also estimated. A large consolidation testing device, possible in both vertical and radial drainage is designed and manufactured. And consolidation test with kaolinite soils were performed under radially inward drainage direction. Pore pressures in varying radial distances and flow rate with time were measured as well as vertical deformations. From the test results, the changes of permeability, volume compressibility and void ratio under consolidation and their spatial variations are estimated. Thus the proposed solution is verified by comparing with the experimentally estimated test results. In addition, it is confirmed that permeability, void ratio and volume compressibility decrease as consolidation and loading steps progress. Also, these soil characteristics increase with radial distant from drainage boundary, where lowest values observed, and slightly decrease as approaching undrained boundary.

키워드

참고문헌

  1. 곽찬문(2005) 다양한 응력-변형조건을 고려한 새로운 압밀계수 평가방법, 석사학위논문, 서울대학교
  2. 윤찬영, 정충기(2005) 연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향, 한국지반공학회논문집, 한국지반공학회, 제21권, 제6호, pp. 5-18
  3. Almeida, M.S.S., Santa Maria, P.E.L., Martins, I.S.M., Spotti, A.P., and Coelho, L.B.M. (2000) Consolidation of a very soft clay with vertical drains, Geotechnique, Vol. 50, No. 6, pp. 633-643 https://doi.org/10.1680/geot.2000.50.6.633
  4. Al-Tabbaa, A. (1995) Excess pore pressure during consolidation and swelling with radial drainage, Geotechnique, Vol. 45, No. 4, pp. 701-707 https://doi.org/10.1680/geot.1995.45.4.701
  5. Al-Tabbaa, A., and Wood, D.M. (1987) Some measurements of the permeability of kaolin, Geotechnique, Vol. 37, No. 4, pp. 499-503 https://doi.org/10.1680/geot.1987.37.4.499
  6. Atkinson, J.H., Evans, J.S., and Ho, E.W.L. (1985) Non-uniformity of triaxial samples due to consolidation with radial drainage, Geotechnique, Vol. 35, No. 3, pp. 353-355 https://doi.org/10.1680/geot.1985.35.3.353
  7. Baek, W. and Moriwaki, T. (2004) Internal behavior of clayey ground improved by vertical drains in 3D-Consolidation process, Soils and Foundations, Vol. 44, No. 3, pp. 25-37
  8. Bergado, D.T., Asakami, H., Alfaro, M.C., and Balasubramaniam, A.S. (1991) Smear Effect of Vertical Drains on Soft Bangkok Clay, Journal of Geotechnical Engineering, Vol. 117, No. 10, pp. 1509-1530 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:10(1509)
  9. Bergado, D.T., Balasubramaniam, A.S., Fannin, R.J., and Holtz, R.D. (2002) Prefabricated vertical drains (PVDs) in soft Bangkok clay: a case study of the new Bangkok International Airport project, Canadian Geotechnical Journal, Vol. 39, pp. 304-315 https://doi.org/10.1139/t01-100
  10. Bo Myint Win, Bawajee, R., Chu, J., and Choa, V. (2000) Investigation of smear zone around vertical drain, 5th International Conf. on Ground Improvement Techniques, pp. 109-114
  11. Hird, C.C. and Moseley, V.J. (2000) Model study of seepage in smear zones around vertical drains in layered soil, Geotechnique, Vol. 50, No. 1 pp. 89-97 https://doi.org/10.1680/geot.2000.50.1.89
  12. Lambe, T.W. and Whitman, R.V. (1979) Soil Mechanics, SI Version, John Wiley & Sons, Inc
  13. Leroueil, S., Bouclin, G., Tavenas, F., Bergeron, L., and La Rochelle, P. (1990) Permeability anisotropy of natural clays as a function of strain, Canadian Geotechnical Journal, Vol. 27, pp. 568-579 https://doi.org/10.1139/t90-072
  14. Leroueil, S., Lerat, P., Hight, D.W., and Powell, J.J.M. (1992) Hydraulic conductivity of a recent estuarine silty clay at Bothkennar, Geotechnique, Vol. 42, No. 2, pp. 275-288 https://doi.org/10.1680/geot.1992.42.2.275
  15. Little, J.A., Muir Wood, D., Paul, M.A., and Bouazza, A. (1992) Some laboratory measurements of permeability of Bothkennar clay in relation to soil fabric, Geotechnique, Vol. 42, No. 2, pp. 355-361 https://doi.org/10.1680/geot.1992.42.2.355
  16. Mesri, G., Feng, T.W., Ali, S., and Hayat, T.M. (1994) Permeability characteristics of soft clays, 13th ICSMFE, New Delhi, India, pp. 187-192
  17. Mesri, G. and Choi, Y.K. (1985) Settlement Analysis of Embankments on Soft Clay, Journal of the Geotechnical Engineering, Vol. 111, No. 4, pp. 441-464 https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441)
  18. Mesri, G. and Olson, R.E. (1971) Mechanisms controlling the permeability of clays, Clays and Clay Minerals, Vol. 19, pp. 151-158 https://doi.org/10.1346/CCMN.1971.0190303
  19. Onoue, A. (1988) Consolidation by vertical drains taking well resistance and smear into consideration, Soils and Foundations, Vol. 28, No. 4 pp. 165-174 https://doi.org/10.3208/sandf1972.28.4_165
  20. Pyrah, I.C., Smith, I.G.N., Hull, D., and Tanaka, Y. (1999) Non-uniform consolidation around vertical drains installed in soft ground, Geotechnical Engineering for Transportation Infrastructure, Balkema, pp. 1563-1569
  21. Seah, T.H. (1990) Anisotropy of Resedimented Boston Blue Clay, Doctoral dissertation, Massachusetts Institute of Technology
  22. Sharma, J.S. and Xiao, D. (2000) Characterization of a smear zone around vertical drains by large-scale laboratory tests, Canadian Geotechnical Journal, Vol. 37, pp. 1265-1271 https://doi.org/10.1139/cgj-37-6-1265
  23. Tavenas, F., Leblond, P., Jean, P., and Leroueil, S. (1983) The permeability of natural soft clays. Part I: Methods of laboratory measurement, Canadian Geotechnical Journal, Vol. 20, pp. 629-644 https://doi.org/10.1139/t83-072
  24. Yune, C.Y. and Chung, C.K. (2005) Consolidation test at constant rate of strain for radial drainage, Geotechnical Testing Journal, ASTM, Vol. 28, No. 1, pp. 71-78
  25. Zhu, G., Yin, J-U., and Luk, S. (2004) Numerical characteristics of a simple finite element formulation for consolidation analysis, Communications in Numerical Methods in Engineering, Vol. 20, pp. 767-775 https://doi.org/10.1002/cnm.662