DOI QR코드

DOI QR Code

목포 북항에서 풍파에 의한 해수범람의 수치 모의

Numerical Simulation of Surge - Wave Combined Inundation at Mokpo North Harbor

  • 이정렬 (성균관대학교 사회환경시스템공학과) ;
  • 강주환 (목포대학교 건설공학부) ;
  • 윤종태 (경성대학교 건설환경공학부)
  • 투고 : 2007.11.28
  • 심사 : 2007.12.22
  • 발행 : 2008.05.31

초록

방조제 건설로 인한 조석확폭 현상이 목포 북항은 물론 목포북항과 좁은 수로로 연결된 청계만에서도 발생되고 있다. 이러한 조석확폭 현상은 조간대를 증가시키고 특히 폭풍우시 수위 증가와 침수구간의 확대를 초래한다. 본 연구에서의 모의 과정은 광역에서의 풍파 모의와 협역에서의 풍파 범람 모의로 구성된다. 비선형 완경사 방정식이 바람에 의한 풍파는 물론 해일과 범람도 모의하도록 개선되었다. 개발된 모형은 청계만에 적용되었으며 목포 북항에는 청계만에서 발생하는 풍파로 인하여 발생할 수 있는 범람 형태를 파악하기 위하여 적용되었다.

Tidal amplification by construction of sea-dike and sea-walls had been detected not only near Mokpo North Harbor but also at Chungkye Bay which is connected with Mokpo North Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of runup height and inundation area during storms. In this study, a simulation process is composed of wind wave generation model for large area and wave inundation model for small coastal zone. The nonlinear version of mild-slope equation is modified for simulating wind-driven surge and wave inundation at a small area. The models are applied to Chungkye Bay, and possible inundation features at Mokpo North Harbor are investigated.

키워드

참고문헌

  1. 강주환(1996) 하구언 및 방조제 건설에 따른 목포해역의 환경변 화. 대한토목학회논문집, 대한토목학회, 제16권, 제II-6호, pp. 611-619
  2. 강주환, 문승록, 박선중(2006) 조석/해일 환경변화를 감안한 고극 조위 빈도분석. 대한토목학회논문집, 대한토목학회, 제26권, 제1B호, pp. 99-106
  3. Briggs, M. J., Synolakis, C.E., Harkins, G.S., and Green, D.R. (1995) Laboratory experiments of tsunami runup on a circular island. PAGEOPH, Vol. 144, pp. 569-593 https://doi.org/10.1007/BF00874384
  4. Kang, J.W. (1999) Changes in tidal characteristics as the result of the construction of sea-dike / seawalls in the Mokpo coastal zone in Korea, Estuarine, Coastal and Shelf Science, Vol. 48, pp. 429-438 https://doi.org/10.1006/ecss.1998.0464
  5. Komen, G.T., Hasselmann, S., and Hasselmann, K. (1984) On the existence of a fully developed wind-sea spectrum, J. Phys. Oceanogr. Vol. 14, pp. 1271-1285 https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  6. Lee, J.L. and Park, C. (2001) A Weakly nonlinear wave model of practical use. Proc. of 4th international symposium waves 2001, Ed. B. L. Edge and J. M. Hemsley, Vol. 1, pp.894-903
  7. Liu, P., L-F., Cho, Y.-S., Briggs, M. J., Kanoglu, U., and Synolakis, C.E. (1995) Runup of solitary waves on a circular island. J. Fluid Mech., Vol. 302, pp. 259-285 https://doi.org/10.1017/S0022112095004095
  8. Miles, J.W. (1951) On the generation of surface waves by shear flw, J. Fluid Mech., Vol. 3, pp. 185-204 https://doi.org/10.1017/S0022112057000567
  9. Phillips, O.M. (1958) The dynamics of the upper ocean, Cambridge University Press, 2nd edition, London
  10. Smith R. and Spinks, T. (1975) Scattering of surface waves by a conical islands. Journal of Fluid Mechanics, Vol. 72, pp. 373- 384 https://doi.org/10.1017/S0022112075003424
  11. Snyder, R.L., Dobson, F.W., Elliot, J.A., and Long, R.B. (1981) Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., Vol. 102, pp. 1-59 https://doi.org/10.1017/S0022112081002528
  12. Titov, V.V. and Synolakis, C.E. (1993) A numerical study of wave runup of the September 1, 1992 Nicaraguan tsunami. Proc. Intern. Tsunami Symposium, p. 627
  13. Wu, H.Y., Ji, X., and Yang, C. (1982) An experiment on numerical prediction of marine winds, Collect Works, Vol. 5, No. 2
  14. Yeh, H., Liu, P., Briggs, M., and Synolakis, C. (1994) Propagation and amplification of tsunamis at coastal boundaries. Nature, Vol. 372, pp. 353-355 https://doi.org/10.1038/372353a0