DOI QR코드

DOI QR Code

Determination of Plastic Settlement of Mortar Using Non-contact Laser Measurement Device

레이저 거리측정 실험을 통한 모르타르의 소성침하량 산정

  • 곽효경 (한국과학기술원 건설 및 환경공학과) ;
  • 하수준 (한국과학기술원 스마트사회기반시설연구센터)
  • Received : 2007.11.26
  • Accepted : 2008.04.08
  • Published : 2008.07.31

Abstract

In this paper, the plastic settlement of mortar is analyzed on the basis of the small strain consolidation theory, and the validity of the approach is verified through the comparison with experimental data. First, the amount of settlement caused by self-weight of bulk mortar is measured using a non-contact laser measurement device and the estimation of material parameters related to the settlement of mortar is followed. In advance, another experiment is also performed on mortar with embedded reinforcement to measure the settlement distribution, and the influence of mixture proportions and cover depth on unequal settlement is analyzed. Finally, correlation studies between experimental data and settlement distribution obtained by consolidation analysis represents that the application of consolidation theory to the analysis of plastic settlement of mortar is reasonable.

이 논문에서는 모르타르의 소성침하 현상을 자중압밀 이론을 적용해 해석하였고 그 타당성을 레이저 거리측정 실험을 통해 검증하였다. 먼저 레이저 거리측정기를 이용해 방해물이 없는 모르타르의 자중압밀 침하량을 측정하였고 측정결과를 토대로 모르타르의 압밀과 관련된 재료상수를 산정하였다. 다음으로 철근이 매입된 모르타르에 대한 침하실험을 수행하여 위치에 따른 침하량 분포를 측정하였으며 배합 및 피복두께가 모르타르의 부등침하에 미치는 영향을 분석하였다. 나아가 모르타르의 자중압밀 해석으로부터 산정된 침하량 분포를 실험결과와 비교 분석하여 모르타르의 소성침하 해석에 압밀이론을 적용하는 것이 타당함을 확인하였고 이를 통해 배합 및 부재 형상이 부등 소성침하에 의해 발생하는 인장응력에 미치는 영향을 검토할 수 있도록 하였다.

Keywords

References

  1. 문제길(1974) 콘크리트 구조물의 균열에 관하여, 건국대학교 공대학보, 제3권, 제1호, pp. 38-42
  2. 전광우, 최영화, 정재동(1997) 철근콘크리트 구조물의 균열발생실태에 관한 조사연구, 대한건축학회 학술발표논문집, 대한건축학회, 제17권, 제2호, pp. 1051-1056
  3. 정재동(2000) 콘크리트 재료공학, 보성각, 서울
  4. 한국콘크리트학회(1996) 최신 콘크리트공학, 기문당, 서울
  5. Alexandridis, A. and Gardner, N. J. (1981) Mechanical behaviour of fresh concrete, Cement and Concrete Research, Vol. 11, No. 3, pp. 323-339 https://doi.org/10.1016/0008-8846(81)90105-8
  6. Biot, M. A. (1941) General theory of three-dimensional consolidation, Journal of Applied Physics, Vol. 12, No. 2, pp. 155-164 https://doi.org/10.1063/1.1712886
  7. Biot, M. A. (1955) Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, Vol. 26, No. 2, pp. 182-185 https://doi.org/10.1063/1.1721956
  8. Biot, M. A. (1956) Theory of deformation of a porous viscoelastic anisotropic soil, Journal of Applied Physics, Vol. 27, No. 5, pp. 459-467 https://doi.org/10.1063/1.1722402
  9. Boivin, S., Acker, P., Rigaud, S., and Clavaud, B. (1998) Experimental assessment of chemical shrinkage of hydrating cement paste, Autoshrink'98 Proceedings of the International Workshop on Autogenous Shrinkage of Concrete, pp. 77-88
  10. Borja, R. I., Tamagnini, C., and Alarcón, E. (1998) Elastoplastic consolidation at finite strain: Part II. Finite element implementation and numerical examples, Computer Methods in Applied Mechanics and Engineering, Vol. 159, No. 1/2, pp. 103-122 https://doi.org/10.1016/S0045-7825(98)80105-9
  11. Cheng, T. T. H. and Johnston, D. W. (1985) Incidence assessment of transverse cracking in concrete bridge decks: Construction and materials considerations, Report No. FHWA/NC/85002, 1, Department of Civil Engineering, North Carolina State University, Raleigh, N.C
  12. Clear, C. A. and Bonner, D. G. (1988) Settlement of fresh concrete - an effective stress model, Magazine of Concrete Research, Vol. 40, No. 142, pp. 3-12 https://doi.org/10.1680/macr.1988.40.142.3
  13. Clear, K. C. (1976) Time-to-corrosion of reinforcing steel in concrete slabs: Performance after 830 daily salt applications, Report No. FHWA-RD-76-70, Federal Highway Administration, Washington, D.C.
  14. Cook, R. D., Malkus, D. S., and Plesha, M. E. (1989) Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York
  15. Dakhil, F. H., Cady, P. D., and Carrier, R. E. (1975) Cracking of fresh concrete as related to reinforcement, Journal of the American Concrete Institute, Vol. 72, No. 8, pp. 421-428
  16. Ferronato, M., Gambolati, G., and Teatini, P. (2001) Ill-conditioning of finite element poroelasticity equations, International Journal of Solids and Structures, Vol. 38, No. 34/35, pp. 5995-6014 https://doi.org/10.1016/S0020-7683(00)00352-8
  17. Ghaboussi, J. and Wilson, E. L. (1973) Flow of compressible fluid in porous elastic media, International Journal for Numerical Methods in Engineering, Vol. 5, No. 3, pp. 419-442 https://doi.org/10.1002/nme.1620050311
  18. Gibson, R. E., England, G. L., and Hussey, M. J. L. (1967) The theory of one-dimensional consolidation of saturated clays: Part I. Finite non-linear consolidation of thin homogeneous layers, Geotechnique, Vol. 17, No. 2, pp. 261-273 https://doi.org/10.1680/geot.1967.17.3.261
  19. Josserand, L. (2002) Ressuage des betons (Bleeding of concrete), PhD thesis, Ecole Nationale des Ponts et Chaussees
  20. Josserand, L., Coussy, O., and Larrard, F. (2006) Bleeding of concrete as an ageing consolidation process, Cement and Concrete Research, Vol. 36, No. 9, pp. 1603-1608 https://doi.org/10.1016/j.cemconres.2004.10.006
  21. Kayir, H. and Weiss, W. J. (2002) A fundamental look at settlement in fresh systems: Role of mixing time and high range water reducers, Proceedings of First North American Conference on Self-Consolidating Concrete, Chicago, USA, pp. 27-32
  22. King, A. and Raffle, J. F. (1976) Studies on the settlement of hydrating cement suspensions, Journal of Physics D: Applied Physics, Vol. 9, No. 10, pp. 1425-1443 https://doi.org/10.1088/0022-3727/9/10/009
  23. Kwak, H. G. and Ha, S. J. (2006) Plastic shrinkage cracking in concrete slabs: Part II. Numerical experiment and prediction of occurrence, Magazine of Concrete Research, Vol. 58, No. 8, pp. 517-532 https://doi.org/10.1680/macr.2006.58.8.517
  24. Lambe, T. W. and Whitman, R. V. (1969) Soil mechanics, Wiley, New York
  25. Lee, K. and Sills, G. C. (1981) The consolidation of a soil stratum, including self-weight effects and large strains, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 5, No. 4, pp. 405-428 https://doi.org/10.1002/nag.1610050406
  26. Lewis, R. W. and Schrefler, B. A. (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, John Wiley & Sons, Chichester, England
  27. Menzel, C. A. (1954) Causes and prevention of crack development in plastic concrete, Portland Cement Association Annual Meeting, pp. 130-136
  28. Powers, T. C. (1939) The bleeding of Portland cement paste, mortar and concrete, Portland Cement Association Research Bulletin, No. 2, pp. 1-182
  29. Qi, C., Weiss, W. J., and Olek, J. (2005) Assessing the settlement of fresh concrete using a non-contact laser profiling approach, Proceedings of International Conference on Construction Materials: ConMat'05, Vancouver, Canada. (CD-ROM)
  30. Ravina, D. and Shalon, R. (1968) Plastic shrinkage cracking, Journal of the American Concrete Institute, Vol. 65, No. 4, pp. 282-292
  31. Sant, G., Lura, P., and Weiss, W .J. (2006) Measurement of volume change in cementitious materials at early ages: review of testing protocols and interpretation of results, suggested for publications in Transportation Research Record. (in press)
  32. Schmitt, T. R. and Darwin, D. (1999) Effect of material properties on cracking in bridge decks, Journal of bridge engineering, Vol. 4, No. 1, pp. 8-13 https://doi.org/10.1061/(ASCE)1084-0702(1999)4:1(8)
  33. Sloan, S. W. and Abbo, A. J. (1999) Biot consolidation analysis with automatic time stepping and error control: Part I. Theory and implementation, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, No. 6, pp. 467-492 https://doi.org/10.1002/(SICI)1096-9853(199905)23:6<467::AID-NAG949>3.0.CO;2-R
  34. Suprenant, B. A. and Malisch, W. R. (1999) The fiber factor, Aberdeen's Concrete Construction, Vol. 44, No. 10, pp. 43-46
  35. Tan, T. S., Wee, T. H., Tan, S. A., Tam, C. T., and Lee, S. L. (1987) A consolidation model for bleeding of cement paste, Advances in Cement Research, Vol. 1, No. 1, pp. 18-26 https://doi.org/10.1680/adcr.1987.1.1.18
  36. Terzaghi, K. (1925) Erdbaumechanik auf Bodenphysikalischer Grundlage, Leipzig, Deuticke
  37. TNO (2003) DIANA 8.1.2 user's manual, TNO Building Construction, the Netherlands
  38. Vermeer, P. A. and Verruijt, A. (1981) An accuracy condition for consolidation by finite elements, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 5, No. 1, pp. 1-14 https://doi.org/10.1002/nag.1610050103
  39. Verruijt, A. (1995) Computational geomechanics, Kluwer Academic Publishers, Dordrecht, The Netherlands
  40. Weyers, R. E., Conway, J. C., and Cady, P. D. (1982) Photoelastic analysis of rigid inclusions in fresh concrete, Cement and Concrete Research, Vol. 12, No. 4, pp. 475-484 https://doi.org/10.1016/0008-8846(82)90062-X
  41. Xie, K. H. and Leo, C. J. (2004) Analytical solutions of onedimensional large strain consolidation of saturated and homogeneous clays, Computers and Geotechnics, Vol. 31, No. 4, pp. 301-314 https://doi.org/10.1016/j.compgeo.2004.02.006
  42. Zienkiewicz, O. C. (1984) Coupled problems and their numerical solution, in: Numerical Methods in Coupled Systems (ed. Lewis, R.W., Bettess, P., and Hinton, E.), Wiley, Chichester, England
  43. Zienkiewicz, O. C., Chan, A. H. C., Pastor, M., Paul, D. K., and Shiomi, T. (1990) Static and dynamic behaviour of soils: A rational approach to quantitative solutions: Part I. Fully saturated problems, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 429, No. 1877, pp. 285-309