References
- 배덕효(1997) 저류함수법을 이용한 추계학적 실시간 홍수예측모형 개발. 한국수자원학회 논문집, 한국수자원학회, 제30권, 제5호, pp. 449-457.
- 심순보, 김선구, 고석구(1992) 최적화 기법에 의한 저류함수 유출 모형의 자동 보정. 대한토목학회논문집. 대한토목학회. 제12권, 제3호. pp. 127-137.
- 이경훈, 문병석, 강일환(1998) ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구. 한국수자원학회 논문집, 한국수자원학회, 제31권, 제6호, pp. 821-832.
- 정대명, 배덕효(2004) 기상예보를 활용한 월 댐유입량 예측. 한국수자원학회논문집. 한국수자원학회, 제37권, 제6호, pp. 449-460.
- Arnold, J.G. and Sammons, N.B. (1988) Decision support system for selecting inputs to a basin scale model. Water Resources Bulletin, Vol. 24, No. 4.
- Bender, M. and Simonovic, S.P. (1994) Decision-support system for long-range stream flow forecasting. Journal of Computing in Civil Engineering, Vol. 8, No. 1. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:1(1)
- Berthouex, P.M., Lai, W., and Darjatmoko, A. (1989) Statisticsbased approach to wastewater treatment plant operations, Journal of Environmental Engineering, Vol. 115, No. 3, June.
- Chang, F.J. and Chen, Y.C. (2001) A counterpropagation fuzzyneural network modeling approach to real time streamflow prediction, Journal of Hydrology, Vol. 245, pp. 153-164. https://doi.org/10.1016/S0022-1694(01)00350-X
- Gautam, D.K. and Holz, K.P. (2001) Rainfall-runoff modeling using adaptive neuro-fuzzy systems, Journal of Hydroinformatics, pp. 3-10.
- Jang, J.S. (1993) ANFIS: Adaptive-Networkbased Fuzzy Inference Systems, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685. https://doi.org/10.1109/21.256541
- Labadie, J.W. and Sullivan, C.H. (1986) Computerized decision support systems for water managers. Journal of Water Resources Planning and Management, Vol. 112, No. 3, ASCE, pp. 299-307. https://doi.org/10.1061/(ASCE)0733-9496(1986)112:3(299)
- Lamarche, A. (1992) Development of a geographic information system in support of the st.-lawrence action plan. Geographic Information Systems (GIS) and Mapping-Practices and Standards, ASTM STP 1126, American Society for Testing and Materials, Philadelphia, pp. 85-96.
- Mamdani, E.H. and Assilian, S. (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, Vol. 7, No. 1 pp. 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
- Merabtene, T., Kawamura, A., Jinno, K., and Olsson, J. (2002) Risk assessment for optimal drought management of an integrated water resources system using a genetic algorithm. Hydrological Processes. Vol. 16, No. 11, pp. 2189-2208. https://doi.org/10.1002/hyp.1150
- Morton, M.S.S. (1980) Book Review of Decision Support Systems: Current Practice and Continuing Challenge by Steven L. Alter, Sloan Management Review, 21:77.
- Nasseri, M., Asghan, K., and Abedini, M.J. (2008) Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural Network. Expert Systems with Applications, Vol. 35, No. 3, pp. 1415-1421. https://doi.org/10.1016/j.eswa.2007.08.033
- Overton, I.C. (2005) Modeling floodplain inundation on regulated river: integrating GIS, remote sensing and hydrologic models, River Research and Applications, Vol. 21, No. 9, pp. 991-1001. https://doi.org/10.1002/rra.867
- Smith, R.D., Peart, R.M., and Barrett, J.R. (1985) Agricultural production management with decision support systems. ASAE Paper No. 85-3076.
- Sugeno, M. (1985) Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co.
- Toth, E., Brath, A., and Montanari, A. (2000) Comparison of shortterm rainfall prediction models for real-time flood forecasting. Journal of Hydrology, Vol. 239, No. 1-4, pp. 132-147. https://doi.org/10.1016/S0022-1694(00)00344-9
- Werner, M., Reggiani, P., Roo A.D., Bates, P., and Sprokkereef, E. (2005) Flood forecasting and warning at the river basin and at the european scale. Natural Hazards, Vol. 36, No. 1-2, pp. 25-42. https://doi.org/10.1007/s11069-004-4537-8