DOI QR코드

DOI QR Code

Development of Decision Support System for Flood Forecasting and Warning in Urban Stream

도시하천의 홍수예·경보를 위한 의사결정지원시스템 개발

  • 이재응 (아주대학교 환경건설교통공학부)
  • Received : 2008.09.17
  • Accepted : 2008.11.07
  • Published : 2008.11.30

Abstract

Due to unusual climate change and global warming, drought and flood happen frequently not only in Korea but also in all over the world. It leads to the serious damages and injuries in urban areas as well as rural areas. Since the concentration time is short and the flood flows increase urgently in urban stream basin, the chances of damages become large once heavy storm occurs. A decision support system for flood forecasting and warning in urban stream is developed as an alternative to alleviate the damages from heavy storm. It consists of model base management system based on ANFIS (Adaptive Neuro Fuzzy Inference System), database management system with real time data building capability and user friendly dialog generation and management system. Applying the system to the Tanceon river basin, it can forecast and warn the stream flows from the heavy storm in real time and alleviate the damages.

최근 들어 지구 온난화로 인한 이상기후의 영향으로 우리나라뿐만 아니라 전 세계적으로 가뭄 및 홍수가 빈번하게 발생하고 있다. 물로 인한 각종 재해는 농촌 지역에서도 피해를 발생시키지만, 특히 인구가 밀집되어 있는 도시 지역에서 큰 피해를 발생시킨다. 도시하천 유역에서의 유출과정은 도달시간이 짧고 홍수량은 급격히 증가하는 특성을 보이므로 호우가 발생하면 대처할 시간이 충분하지 않아 피해가 크게 발생할 가능성이 높다. 도시하천 유역에서 호우로 인한 피해를 경감시키기 위한 하나의 대안으로 홍수예 경보를 위한 의사결정시스템을 개발하였다. 도시하천의 홍수예 경보를 위한 의사결정시스템은 ANFIS (Adaptive Neuro Fuzzy Inference System)을 이용한 모형관리시스템, 실시간 자료를 구축할 수 있는 데이터베이스 관리시스템, 그리고 사용자가 이용하기 편리한 인간과 컴퓨터 사이의 대화관리시스템로 구성되어 있다. 개발된 시스템을 탄천 유역에 적용한 결과 호우로 인한 하천의 유량을 실시간으로 예측하여 사전에 경보를 발생하고 피해를 경감시킬 수 있었다.

Keywords

References

  1. 배덕효(1997) 저류함수법을 이용한 추계학적 실시간 홍수예측모형 개발. 한국수자원학회 논문집, 한국수자원학회, 제30권, 제5호, pp. 449-457.
  2. 심순보, 김선구, 고석구(1992) 최적화 기법에 의한 저류함수 유출 모형의 자동 보정. 대한토목학회논문집. 대한토목학회. 제12권, 제3호. pp. 127-137.
  3. 이경훈, 문병석, 강일환(1998) ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구. 한국수자원학회 논문집, 한국수자원학회, 제31권, 제6호, pp. 821-832.
  4. 정대명, 배덕효(2004) 기상예보를 활용한 월 댐유입량 예측. 한국수자원학회논문집. 한국수자원학회, 제37권, 제6호, pp. 449-460.
  5. Arnold, J.G. and Sammons, N.B. (1988) Decision support system for selecting inputs to a basin scale model. Water Resources Bulletin, Vol. 24, No. 4.
  6. Bender, M. and Simonovic, S.P. (1994) Decision-support system for long-range stream flow forecasting. Journal of Computing in Civil Engineering, Vol. 8, No. 1. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:1(1)
  7. Berthouex, P.M., Lai, W., and Darjatmoko, A. (1989) Statisticsbased approach to wastewater treatment plant operations, Journal of Environmental Engineering, Vol. 115, No. 3, June.
  8. Chang, F.J. and Chen, Y.C. (2001) A counterpropagation fuzzyneural network modeling approach to real time streamflow prediction, Journal of Hydrology, Vol. 245, pp. 153-164. https://doi.org/10.1016/S0022-1694(01)00350-X
  9. Gautam, D.K. and Holz, K.P. (2001) Rainfall-runoff modeling using adaptive neuro-fuzzy systems, Journal of Hydroinformatics, pp. 3-10.
  10. Jang, J.S. (1993) ANFIS: Adaptive-Networkbased Fuzzy Inference Systems, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685. https://doi.org/10.1109/21.256541
  11. Labadie, J.W. and Sullivan, C.H. (1986) Computerized decision support systems for water managers. Journal of Water Resources Planning and Management, Vol. 112, No. 3, ASCE, pp. 299-307. https://doi.org/10.1061/(ASCE)0733-9496(1986)112:3(299)
  12. Lamarche, A. (1992) Development of a geographic information system in support of the st.-lawrence action plan. Geographic Information Systems (GIS) and Mapping-Practices and Standards, ASTM STP 1126, American Society for Testing and Materials, Philadelphia, pp. 85-96.
  13. Mamdani, E.H. and Assilian, S. (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, Vol. 7, No. 1 pp. 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  14. Merabtene, T., Kawamura, A., Jinno, K., and Olsson, J. (2002) Risk assessment for optimal drought management of an integrated water resources system using a genetic algorithm. Hydrological Processes. Vol. 16, No. 11, pp. 2189-2208. https://doi.org/10.1002/hyp.1150
  15. Morton, M.S.S. (1980) Book Review of Decision Support Systems: Current Practice and Continuing Challenge by Steven L. Alter, Sloan Management Review, 21:77.
  16. Nasseri, M., Asghan, K., and Abedini, M.J. (2008) Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural Network. Expert Systems with Applications, Vol. 35, No. 3, pp. 1415-1421. https://doi.org/10.1016/j.eswa.2007.08.033
  17. Overton, I.C. (2005) Modeling floodplain inundation on regulated river: integrating GIS, remote sensing and hydrologic models, River Research and Applications, Vol. 21, No. 9, pp. 991-1001. https://doi.org/10.1002/rra.867
  18. Smith, R.D., Peart, R.M., and Barrett, J.R. (1985) Agricultural production management with decision support systems. ASAE Paper No. 85-3076.
  19. Sugeno, M. (1985) Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co.
  20. Toth, E., Brath, A., and Montanari, A. (2000) Comparison of shortterm rainfall prediction models for real-time flood forecasting. Journal of Hydrology, Vol. 239, No. 1-4, pp. 132-147. https://doi.org/10.1016/S0022-1694(00)00344-9
  21. Werner, M., Reggiani, P., Roo A.D., Bates, P., and Sprokkereef, E. (2005) Flood forecasting and warning at the river basin and at the european scale. Natural Hazards, Vol. 36, No. 1-2, pp. 25-42. https://doi.org/10.1007/s11069-004-4537-8