The Optimal Enrichment Condition of Rotifer Brachionus rotundiformis

소화효소 활성으로 본 rotifer Brachionus rotundiformis의 적정 영양강화 조건

  • Kwon, O-Nam (Division of Marine Biosciences, Graduate School of Fisheries Science, Hokkaido University) ;
  • Park, Heum-Gi (Faculty of Marine Bioscience and Technology, Kangnung National University)
  • 권오남 (북해도대학 대학원수산과학연구원) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Published : 2008.02.25

Abstract

The purpose of the study was to suggest the optimal lipid enrichment conditions used digestive enzyme activity of rotifer changing due to water temperature and salinity. The high population growth appeared at the experiment temperature more than 28 degrees highly on the culture temperature(maximum 32 degrees, 1,453 individual/mL). The fecundity was low at high temperature, and the egg ratio was high at low temperature. Population growth of 10 and 15 ppt appeared in most highly, but the fecundity and the egg ratio were high most significantly appeared in natural seawater(32 psu). The digestive enzyme activity by the culture environment mainly showed high activity in natural seawater(amylase exclusion, 15 psu). However, the TAP activity by the water temperature showed highly at the more high temperature, but the amylase and the lipase appeared at low temperature. We carried out the lipid enrichment at 20 degrees and 26 degrees in a condition of the natural seawater. Total protein, the total essential amino acids differed not significantly. The methionine content that was essential amino acids, a total lipid content, unsaturated index of fatty acids, DHA and the DHA/EPA ratio were high significantly each in $20^{\circ}C$ enrichment trial. Therefore, we could suggest the $20^{\circ}C$ and natural seawater for the optimal lipid enrichment condition in aquaculture, because methionine contents, several indexes by the lipid, TG-lipase activity, fecundity and egg ratio are high.

본 연구의 목적은 rotifer Brachionus rotundiformis의 수온과 염분농도의 변화에 따른 이들의 소화효소 활성을 파악하고, 소화효소 활성을 기초로 적정 영양강화 조건을 찾는 것이다. 다른 온도에서 24시간 배양된 rotifer 밀도는 $32^{\circ}C$에서 1,453 개체/mL로 가장 높았다(P<0.05). 그리고 배양온도 $28^{\circ}C$에서 염분농도에 따른 rotifer 밀도는 15 에서 2,147 개체/mL로 가장 높게 나타났다(P<0.05). 배양환경에 따른 rotifer의 소화효소 활성에서 TAP 개체당 활성은 $24-32^{\circ}C$에서 유의적으로 높게 나타났으며(P<0.05), 단백질 비활성은 $32-36^{\circ}C$에서 높게 조사되었다(P<0.05). 그리고 TG-lipase 활성에서는 개체당 활성과 단백질 비활성 모두 $20^{\circ}C$에서 가장 높은 활성을 보였다(P<0.05). 또한 염분별 실험에서 TAP와 TG-lipase 활성은 32 psu에서 가장 높은 활성을 보였다(P<0.05). 32 psu에서 온도별 영양강화한 rotifer의 methionine 함량(% in protein), 지질 함량과 지방산 불포화도이 $20^{\circ}C$에서 유의적으로 높게 나타났다. 특히, DHA와 DHA/EPA 비가 $20^{\circ}C$ 실험구에서 12.6%와 12.5의 비로 각각 높았다(P<0.05). 따라서 rotifer B. rotundiformis의 지질 영양강화는 특히 TGlipase 활성을 높여 줄 수 있는 32 psu, $20^{\circ}C$에서 실시하는 것이 지방산 불포화도, DHA 및 DHA/EPA 비를 높여 줄 수 있는 효과적인 방법이라고 판단된다.

Keywords

References

  1. Alarcn, M. D., F. J. Moyano and E. Abelln, 1998. Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol. Biochem., 19, 257−267
  2. Barclay, W. and S. Zeller, 1996. Nutritional enrichment of n-3 and n-6 fatty acids in rotifers and Artemia nauplii by feeding spraydried Schizochytrium sp. J. World Aquacult., 27, 314−322
  3. Benitez, L. V. and L. B. Tiro, 1982. Studies on the digestive proteases of the milkfish Chanos chanos. Mar. Biol., 71, 309− 315 https://doi.org/10.1007/BF00397047
  4. Buckley, L. J., 1979. Relationship between RNA-DNA ratio, prey density and growth rate in Atlantic cod (Gadus morhua) larvae. J. Fish. Res. Bd. Can., 36, 1479−1502
  5. Buckley, L. J., 1980. Changes in ribonucleic acid, deoxyribonucleic acid, and protein content during ontogenesis in winter flounder, Pseudopleuronectes americanus, and effect of starvation. Fish. Bull., 77, 703−708
  6. Buckley, L. J., 1984. RNA-DNA ratio: an index of larval fish growth in the sea. Mar. Biol., 80, 291−298
  7. Chun, C. Z., H. G. Park, S. B. Hur and Y. T. Kim, 1996. Biochemical studies of an endoglucanase from marine rotifer, Brachionus plicatilis. J. Aquacult., 9, 453−459
  8. Dabrowski, K. and J. Glogowski, 1977. A study of the application of proteolytic enzymes to fish food. Aquaculture, 12, 349−360
  9. Duncan, D.B., 1955. Multiple-range and multiple F tests. Biometrics, 11, 1−42 https://doi.org/10.2307/3001478
  10. Fernndez-Reiriz, M. J., U. Labarta and M. J. Ferreiro, 1993. Effects of commercial enrichment diets on the nutritional value of the rotifer (Brachionus plicatilis). Aquaculture, 112, 195− 206 https://doi.org/10.1016/0044-8486(93)90445-5
  11. Garca-Ortega, A., J. A. J. Verreth, P. Coutteau, H. Segner, E. A. Huisman and P. Sorgeloos, 1998. Biochemical and enzymatic characterization of decapsulated cysts and nauplii of the brine shrimp Artemia at different developmental stages. Aquaculture, 161, 501−514
  12. Folch, J., M. Lees, G. H. Sloane Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem., 226, 497−509
  13. Hagiwara, A., A. Hino and R. Hirano. 1988. Effects of temperature and chlorinity on resting egg formation in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi, 54, 569−575
  14. Ito, T., 1960. On the culture of the mixohaline rotifer Brachionus plicatilis O.F. Muller, in sea water. Rep. Fac. Fish., Prefect. Univ. Mie, 3, 708−740
  15. Kolkovski, S., 2001. Digestive enzymes in fish larvae and juveniles- implications and applications to formulated diets. Aquaculture, 200, 181−201
  16. Kunitz, M., 1947. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. Physiol., 30, 291−310
  17. Kurokawa, T., M. Shiraishi and T. Suzuki, 1998. Qualification of exogenous protease derived from zooplankton in the intestine of Japanese sardine Sardiniops melanoticus larvae. Aquaculture, 161, 491−499
  18. Kwon, O. N. and H. G. Park, 2005. Characterization of ${\alpha}$-amylase, total alkaline protease, trypsin and triacylglycerol-lipase activity of the euryhaline rotifer, Brachionus rotundiformis. J. Aquacult., 18, 245−251. (in Korean)
  19. Kwon, O. N. and H. G. Park, 2008. The relationship with the population growth and the digestive enzymes activity of rotifer, Brachionus rotundiformis. J. Aquacult., in press (in Korean)
  20. Lowry, O. H, N. J. Rosebrough, A. L. Farr and R. J. Randall, 1951. Protein measurement with the folic phenol reagent. J. Biol. Chem., 193, 265−275
  21. Lubzens, L., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147, 245−255
  22. Maruyama, I., T. Nagano, I. Shigeno, Y. Ando, K. Hirayama. 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 385, 133−138
  23. Mercier, L., C. Audet, Jol de la Noe, B. Parent, C. C. Parrish, and N. W. Ross, 2004. First feeding of winter flounder (Pseudopleuronectes americanus) larvae: use of Brachionus plicatilis acclimated at low temperature as live prey. Aquaculture. 229. 361− 376 https://doi.org/10.1016/S0044-8486(03)00399-5
  24. Munilla-Moran, R. and J. R. Stark, 1989. Protein digestion in early turbot larvae, Scophthalmus maximus (L.). Aquaculture, 81, 315−326
  25. Munilla-Moran, R., J. R. Stark. and A. Barbour, 1990. The role of exogenous enzyme in digestion in cultured turbot larvae Scophthalmus maximus. Aquaculture, 88, 337−350
  26. Olsen, Y., K. I. Reitan, and O. Vadstein, 1993. Dependence of temperature on loss rates of rotifers lipids and ${\omega}$3 fatty acids in starved Brachionus plicatilis cultures. Hydrobiologia, 255/ 256, 13−20
  27. Park, H. G. and J. A. Brown, 2004. Biochemical composition of rotifer, Brachionus plicatilis enriched with different commercial enrichments. J. Aquacult., 17, 187−196. (in Korean)
  28. Park, H. G. 1997. Mass production of resting eggs of Korean rotifer Brachionus plicatilis. Ph.D. thesis. Pukyong National University, Korea, 115 pp. (in Korean)
  29. Park, H. G. 1998. Growth and production of resting eggs of freshwater rotifer, Brachionus calyciflorus Pallas at the different temperature. J. Korean Fish. Soc., 31(5), 779−784. (in Korean)
  30. Park, H. G., S. B. Hur, 1996. Effect of temperature and salinity on production of resting egg in Korean rotifer, Brachionus plicatilis (L and S type). J. Aquacult., 9, 321−327
  31. Park, H. G., V. Puvanendran, A. Kellett, C. C. Parrish, and J. A. Brown, 2006. Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). J. Mar. Sci., 63, 285−295
  32. Pourriot. R. and T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104, 213−224
  33. Rainuzzo, J. R., Y. Olsen and G. Rosenlund, 1989. The effect of enrichment diets on the fatty acids composition of the rotifer Brachionus plicatilis. Aquaculture, 79, 157−161
  34. Richard, P., J. P. Bergeron, M. Boulhic, R. Galois and J. Person- Le Ruyet, 1991. Effect of starvation on RNA, DNA and protein content of laboratory-reared larvae and juveniles of Solea solea. Mar. Ecol. Prog. Ser., 72, 69−77
  35. Sargent, J., L. McEvoy, A. Estevez, G. Bell, M. Bell, J. Henderson, and D. Tocher, 1999a. Lipid nutrition of marine fish during early development: culture status and future directions. Aquaculture, 179, 217−229
  36. Sargent, J., G. Bell, L. McEvoy, D. Tocher and A. Estevez, 1999b. Recent developments in the essential fatty acid nutrition of fish. Aquaculture, 177, 191−199
  37. Schmidt, F. H., H. Stork and K. von Dahl., 1974. Lipase, photometric assay. (in) H.U. Bergmeyer (ed.), Methods of enzymatic analysis vol. 2, Academic Press, New York, pp. 819−823
  38. Somogyi, M., 1952. Notes on sugar determination. J. Bio. Chem., 195, 19−23
  39. Ueberschr, B., 1993. Measurement of proteolytic enzyme activity: significance and application in larval fish research. (in) Walther, B.T., Fyhn, H.T. (eds.), Physiology and biochemistry of fish larvae development. University of Bergen Press, Bergen, Norway, 235−238
  40. Watanabe, T., 1993. Importance of docosahexaenois acid in marine larval fish. J. World. Aquacult. Soc., 24, 152−161