초소형 Rotifer Synchaeta kitina의 성장을 위한 최적 먹이 및 공급량

Optimal Food and Concentration for the Growth of the Ultra-small Rotifer Synchaeta kitina

  • 박진철 (강릉대학교 해양생명공학부) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Park, Jin-Chul (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Park, Heum-Gi (Faculty of Marine Bioscience and Technology, Kangnung National University)
  • 발행 : 2008.05.25

초록

본 연구는 입이 작은 어류들의 초기 먹이생물로 이용 가능성이 있는 초소형 rotifer Synchaeta kitina의 대량배양을 위한 이들의 최적 먹이생물 및 공급량을 규명하는데 그 목적이 있다. 초소형 rotifer S. kitina를 대상으로 각기 다른 종류의 먹이를 6개(TET, ISO, CHL, TET+ISO, TET+CHL 및 ISO+CHL)의 실험구로 나누어 이들의 최고밀도, 포란률, 성장률, 발달단계, 산란수 및 수명 등을 조사하였다. 먹이종류에 따른 밀집배양에서 최고밀도, 포란률 및 성장률은 T. suecica를 단독 또는 혼합 공급한 실험구가 그렇지 않은 실험구에 비해 높은 것으로 나타났다. 또한 개체배양 실험에서도 생식 전 단계, 순 생식 단계, 산란수 및 수명이 T. suecica를 공급한 실험구에서 더 높은 것으로 조사되었다. 먹이 공급량에 따른 개체 및 밀집배양 실험에서는 rotifer 개체 당 T. suecica를 10,000세포로 공급하는 것이 최고밀도, 포란률, 성장률, 산란수 및 수명에 효율적인 것으로 나타났다. 따라서 초소형 rotifer S. kitina의 대량배양을 위한 최적의 먹이생물은 T. suecica이며, 그에 따른 공급량은 개체 당 10,000 세포가 적합할 것으로 판단된다.

We investigated the food-effect for ultra-small rotifer Synchaeta kitina cultured under a individual and community by several diets: 3 single trials(Tetraselmis suecica, TET; Isochrysis galbana, ISO; Marine Chlorella ellipsoidea, CHL) and 3 trials with a mixture of 2 species. The rotifer was cultured on the different feeding concentrations. In the individual cultures, the maximum number of offsprings and maximum lifespan of the female investigated to 5.8 inds. and 12.7 days in TET trial, respectively. Values of the developmental phases of the rotifer fed with T. suecica were higher than those of trials without T. suecica. Also it approached faster to maturation level. In the community cultures, the maximum density of TET+CHL trial elevated up to 1,569 inds./mL. But, CHL and ISO showed a poor growth rate and maximum density. The offsprings of the female increased continuously when fed by T. suecica trial, up to $10{\times}10^3$ cells/ind./day. As the quantity of supplied diet was lowered their lifespan were decreased. But, the maximum density and growth rate in the community cultures showed the highest value in the $10{\times}10^3$ cells/ind./day. The efficient food for mass culture of S. kitina was T. suecica, and optimum concentration of their food was 10,000 cells for an individual.

키워드

참고문헌

  1. Becker, B., K. Hard, M. Melkonian, J. P. Kamerling and J. F. G. Vliegenthart, 1989. Identification of 3-deoxy-manno-2-octulosonic acid, 3-deoxy-5-O-methyl-manno-2-octulosonic acid and 3-deoxy-lyxo-2-heptulosaric acid in the cell wall (theca) of the green alga Tetraselmis striata Butcher (Prasinophyceae). Eur. J. Biochem., 182, 153-160 https://doi.org/10.1111/j.1432-1033.1989.tb14811.x
  2. Boney, A. D., 1989. Phytoplankton. Edward Arnold, London, 2nd edn., 11-13
  3. Bosque, T., R. Hernandez, R. Perez, R. Todoli and R. Oltra, 2001. Effects of salinity, temperature and food level on the demographic characteristics of the seawater rotifer, Synchaeta littoralis Rousselet. J. Exp. Mar. Biol. Ecol., 258, 55-64 https://doi.org/10.1016/S0022-0981(00)00345-2
  4. Carmona, M. J., M. Serra and M. R. Miracle, 1994. Effect of population density and genotype on life-history traits in the rotifer Brachionus plicatilis O. F. Muller. J. Exp. Mar. Biol. Ecol., 182, 223-235 https://doi.org/10.1016/0022-0981(94)90053-1
  5. Chun, C. Z., H. G. Park, S. B. Hur and Y. T. Kim, 1996. Biochemical studies of an endoglucanase from marine rotifer, Brachionus plicatilis. Journal of Aquaculture, 9(4), 453-459
  6. Ducan, D. B., 1955. Multiple-range and mutiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  7. Egloff, D. A., 1986. Effects of Olithodiscus luteus on the feeding and reproduction of the marine rotifer Synchaeta cecilia. J. Plank. Res., 8, 263-274 https://doi.org/10.1093/plankt/8.2.263
  8. Egloff, D. A., 1988. Food and growth relations of the marine microzooplankton, Synchaeta cecilia (Rotifera). Hydrobiologia, 157, 129-141 https://doi.org/10.1007/BF00006966
  9. Fukusho, K., M. Okauchi, S. Nuraini, A. Tsujigado and T. Watanabe, 1984. Food value of rotifer Brachionus plicatils, cultured with Tetraselmis tetrathele for larvae of red sea bream Pagrus major. Bull. Hap. Soc. Sci. Fish., 50(8), 1439-1444 https://doi.org/10.2331/suisan.50.1439
  10. Galkovskaja, G. A., 1987. Planktonic rotifers and temperature. Hydrobiologia, 147, 307-317 https://doi.org/10.1007/BF00025759
  11. Hagiwara, A., W. G. Gallardo, M. Assavaaree, T. Kotani and A. B. de Araujo, 2001. Live food production in Japan: recent progress and future aspects. Aquaculture, 200, 111-127 https://doi.org/10.1016/S0044-8486(01)00696-2
  12. Halbach, U. and G. Halbach-Keup, 1974. Quantitative beziehungen zwischen Phytoplankton und der Populationsdynamik der Rotators Brachionus calyciflorus Pallas. Befunde aus Laboratoriumsexperimenten und Freilanduntersuchungen. Arch. Hydrobiol., 73, 272-309
  13. Hotos, G. N., 2002. Selectivity of the rotifer Brachionus plicatilis fed mixtures of algal species with various cell volumes and cell densities. Aquat. Res., 33, 949-957 https://doi.org/10.1046/j.1365-2109.2002.00746.x
  14. James, C. M. and T. S. Abu-Rezeq, 1988. Effect of different cell densitise of Chlorella capsulata and marine Chlorella sp. for feeding the rotifer Brachionus plicatilis. Aquaculture, 69, 43-56 https://doi.org/10.1016/0044-8486(88)90185-8
  15. Korstad, J., Y. Olsen and O. Vadstein, 1989a. Life history characteristics of Brachionus plicatilis (rotifera) fed different algae. Hydrobiologia, 186/187, 43-50 https://doi.org/10.1007/BF00048895
  16. Korstad, J., O. Vadstein and Y. Olsen, 1989b. Feeding kinetics of Brachionus plicatilis fed Isochrysis galbana. Hydrobiologia, 186/187, 51-57 https://doi.org/10.1007/BF00048896
  17. Lee, K. W., H. G. Park and K. Y. Park, 2000. Different combinations of condensed chlorella and baker's yeast for mass culture of the freshwater rotifer, Brachionus calyciflorus Pallas. J. Aquacult., 13(2), 147-152
  18. Maruyama, I., T. Nakao, I. Shigeno, Y. Ando and K. Hirayama, 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 358, 133-138 https://doi.org/10.1023/A:1003116003184
  19. Oltra, R. and R. Todol, 1997. Effects of temperature, salinity and food level on the life history traits of the marine rotifer, Synchaeta cecilia valentina, n. subsp. J. Plank. Res., 19, 693-702 https://doi.org/10.1093/plankt/19.6.693
  20. Park, H. G., K. W. Lee and S. K. Kim, 1999. Growth of rotifer by the air, oxygen gas-supplied and the pH adjusted productive of the high density culture. J. Kor. Fish. Soc., 32, 757-784
  21. Park, J. C. and H. G. Park, 2008. Optimal salinity and temperature condition for the growth of the ultra-small rotifer Synchaeta kitina
  22. Pourriot, R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih., 8, 243-260
  23. Rico-Martinez, R. and S. I. Dodson, 1992. Culture of the rotifer, Brachionus calyciflorus Pallas. Aquaculture, 105, 191-199 https://doi.org/10.1016/0044-8486(92)90130-D
  24. Rothhaupt, K. O., 1990. Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnol. Oceanogr., 35, 24-32 https://doi.org/10.4319/lo.1990.35.1.0024
  25. Salt, G. W., 1987. The components of feeding behavior in rotifers. Hydrobiologia, 147, 271-281 https://doi.org/10.1007/BF00025754
  26. Satuito, C. G. and K. Hirayama, 1989. Fat soluble vitamin requirements of the rotifer, Brachionus plicatilis. (in) J. Maclean, L. Dizon and L. Hosillos. (Eds). The First Asian Fisheries Forum, Manila, Philippines, 619-622
  27. Schlosser, H. J. and K. Anger, 1982. The significance of some methodological effects on filtration and ingestion rates of the rotifer Brachionus plicatilis. Helgol. Meeresunters, 35, 215-225 https://doi.org/10.1007/BF01997552
  28. Schmid-Araya, J. M., 1991. The effect of food concentration on the life histories of Brachionus plictilis and Encentrum linnhei. Scott. Arch. Hydrobiol., 121, 87-102
  29. Serra, M., M. J. Carmona and M. R. Miracle, 1994. Survival analysis of three clones of Brachionus plicatilis (Rotifera). Hydrobioloia, 227, 97-105
  30. Snell, T. W., C. J. Bieberich and R. Fuerst, 1983. The effects of green and blue-green algal diets on the reproductive rate of the rotifer Brachionus plicatilis. Aquaculture, 31, 21-30 https://doi.org/10.1016/0044-8486(83)90254-5
  31. SPSS Inc., 1997. SPSS Bass 12.0 for window, SPSS Inc., 444N. Michigan Avenue, Chicago. IL, 60611
  32. Starkweather, P. L. and J. J. Gilbert, 1977. Radiotracer determination of feeding in Brachionus calyciflorus: the importance of gut passage times. Arch. Hydrobiol. Beih. Ergb. Limnol., 8, 261-263
  33. Starkweather, P. L., 1980. Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia, 73, 63-72 https://doi.org/10.1007/BF00019427
  34. Stemberger, R. S. and J. J. Gilbert, 1985. Body size, food concentration and population growth in plankonic rotifers. Ecology, 66, 1151-1159 https://doi.org/10.2307/1939167
  35. Sze, P., 1986. A biology of the algae. Wm. C. Brown Publisher, 35-40
  36. Yoshimatsu, T., H. Imoto, M. Hayashi, K. Toda and K. Yoshimura, 1997. Preliminary results in improving essential fatty acids enrichment of rotifer cultured in high density. Hydrobiologia, 358, 153-157 https://doi.org/10.1023/A:1003161214088
  37. Yufera, M. and E. Pascual, 1980. Estudio del rendimiento de cultivos del rotifero Brachionus plicatilis O. F. Muller alimentados conlevadura de panification. Invest. Pseq., 44(2), 361-368