Expression of Prolactin Receptor mRNA and Blood Physiological Responses to Salinity Changes in the Black Porgy Acanthopagrus schlegeli

염분 변화에 따른 감성돔 Acanthopagrus schlegeli의 Prolactin Receptor(PRLR) mRNA 발현 및 생리적 반응

  • An, Kwang-Wook (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Min, Byung-Hwa (Aquaculture Research Team, NFRDI) ;
  • Park, In-Seok (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Heo, Youn-Seong (Aquaculture Research Team, NFRDI) ;
  • Choi, Yong-Ki (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Jo, Pil-Gue (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Chang, Young-Jin (Department of Aquaculture, Pukyong National University) ;
  • Choi, Cheol-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 안광욱 (한국해양대학교 해양환경생명과학부) ;
  • 민병화 (국립수산과학원 수산생명과학본부 양식관리팀) ;
  • 박인석 (한국해양대학교 해양환경생명과학부) ;
  • 허윤성 (국립수산과학원 수산생명과학본부 양식관리팀) ;
  • 최용기 (한국해양대학교 해양환경생명과학부) ;
  • 조필규 (한국해양대학교 해양환경생명과학부) ;
  • 장영진 (부경대학교 양식학과) ;
  • 최철영 (한국해양대학교 해양환경생명과학부)
  • Published : 2008.05.25

Abstract

We isolated complementary DNA(cDNA) encoding prolactin receptor(PRLR) from gill of black porgy Acanthopagrus schlegeli. Its PRLR cDNA consists of 1,611 base pairs and encodes the protein of 536 amino acids. To investigate the osmoregulatory abilities of black porgy in different salinities(35, 10 and 0 psu), we examined the expression of PRLR mRNA in osmoregulatory organs(gill, kidney and intestine) using reverse transcription(RT)-PCR. In gill and intestine, PRLR mRNA levels were high in 10 psu, and then decreased in 0 psu, but there is no changes in kidney. Also, plasma osmolality, $Na^+\;and\;Cl^-$ levels decreased during the experimental period. These results suggest that PRLR plays an important role in hormonal regulation in osmoregulatory organs during freshwater acclimation, thereby improving the hyper-osmoregulatory ability of black porgy in hypoosmotic environments.

본 연구에서는 담수적응 감성돔 Acanthopagrus schlegeli의 아가미로부터 전장의 PRLR cDNA를 분리하였다. 감성돔 PRLR은 1,611개의 염기로 구성되어져 있었으며, 536개의 아미노산을 암호화하고 있었다. 염분 변화에 따른 감성돔의 삼투압 조절 능력을 알아보기 위하여 RT-PCR을 이용하여 삼투압 조절기관인 아가미, 신장 및 장에서 PRLR mRNA의 발현량의 변화를 조사하였다. 아가미와 장에서 PRLR mRNA의 발현은 10 psu 해수에서 유의하게 높게 나타났으며, 완전한 담수 환경에서는 감소하는 경향을 나타내었다. 그러나, 신장에서는 PRLR mRNA의 발현량의 변화가 관찰되지 않았으며, 담수에 적응시 혈장 삼투질 농도 및 $Na^+,\;Cl^-$ 이온 농도 또한 감소하는 경향을 나타내었다. 따라서, 본 연구의 결과를 통해 PRLR이 감성돔의 담수적응시 삼투압 조절 기관에서 호르몬의 조절과 관련한 중요한 역할을 담당하고 있을 가능성과 저염분 환경에서 감성돔의 고삼투압 조절 능력을 향상시키는 역할을 하고 있을 것으로 사료된다.

Keywords

References

  1. An, K. W., N. N. Kim and C. Y. Choi, 2008. Cloning and expression of aquaporin 1 and arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegeli: effect of freshwater acclimation. Fish Physiol. Biochem., 34, 185-194 https://doi.org/10.1007/s10695-007-9175-0
  2. Arjona, F. J., L. Vargas-Chacoff, I. Ruiz-Jarabo, M. P. Martin del Rio and M. Mancera, 2007. Osmoregulatory response of Senegalese sole (Solea senegalensis) to changes in environmental salinity. Comp. Biochem. Physiol. A, 148, 413-421 https://doi.org/10.1016/j.cbpa.2007.05.026
  3. Barton, B. A. and G. K. Iwama, 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann. Rev. Fish Dis., 1, 3-26 https://doi.org/10.1016/0959-8030(91)90019-G
  4. Carmichael, G. J., J. R. Tomasso, B. A. Simco and K. B. Davis, 1984. Characterization and alleviation of stress associated with hauling largemouth bass. Trans. Am. Fish. Soc., 113, 778-785 https://doi.org/10.1577/1548-8659(1984)113<778:CAAOSA>2.0.CO;2
  5. Chang, Y. J., B. H. Min and C. Y. Choi, 2007. Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological response during freshwater acclimation. Comp. Biochem. Physiol. B, 147, 122-128 https://doi.org/10.1016/j.cbpb.2007.01.006
  6. Cho, Y. M., J. Shin and Y. C. Sohn, 2006. Gene expression levels of growth hormone, prolactin and their receptors of olive flounder Paralichthys olivaceus by salinity changes. J. Kor. Fish. Soc., 39, 326-332 https://doi.org/10.5657/kfas.2006.39.4.326
  7. Choi, C. Y. and K. W. An, 2007. Cloning and expression of Na+/K+-ATPase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress. Comp. Biochem. Physiol. B, 149, 91-100 https://doi.org/10.1016/j.cbpb.2007.08.009
  8. Frisch, A. and T. Anderson, 2005. Physiological stress responses of two species of coral trout (Plectropomus leopardus and Plectropomus maculatus). Comp. Biochem. Physiol. A, 140, 317-327 https://doi.org/10.1016/j.cbpb.2005.01.014
  9. Goffin, V., B. Bouchard, C. J. Ormandy, E. Wetmann, F. Ferrag, P. Touraine, C. Bole-Feysot, R. A. Maaskant, P. Clement-Lacroix, M. Edery, N. Binart and R. A. Kelly, 1998. Prolactin: A hormone at the crossroads of neuroimmunoendocrinology. Ann. N.Y. Acad. Sci., 840, 498-509 https://doi.org/10.1111/j.1749-6632.1998.tb09588.x
  10. Higashimoto, Y., N. Nakao, T. Ohkubo, M. Tanaka and K. Nakashima, 2001. Structure and tissue distribution of prolactin receptor mRNA in Japanese flounder (Paralichthys olivaceus): conserved and preferential expression in osmoregulatory organs. Gen. Comp. Endocrinol., 123, 170-179 https://doi.org/10.1006/gcen.2001.7660
  11. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, 95-98
  12. Hirano, T., 1986. The spectrum of prolactin action in teleosts. (in) C. L. Ralph (ed.), Comparative endocrinology: developments and directions. Alan R. Liss, New York, pp. 53-74
  13. Kitajima, C. and Y. Tsukashima, 1983. Morphology, growth and low temperature and low salinity tolerance of sparid hybrids (Sparus sarba, Acanthopagrus schlegeli). Jap. J. Ichthyol., 30, 275-283
  14. Kumar, S., K. Tamura and M. Nei, 2004. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief. Bioinform., 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  15. Lee, K. M., T. Kaneko and K. Aida, 2006. Prolactin and prolactin receptor expressions in a marine teleost, pufferfish Takifugu rubripes. Gen. Comp. Endocrinol., 146, 318-328 https://doi.org/10.1016/j.ygcen.2005.12.003
  16. Mancera, J. M., J. M. Perez-Figares and P. Fernandez-Llebrez, 1993. Osmoregulatory responses to abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata L.). Comp. Biochem. Physiol. A, 106, 245-250 https://doi.org/10.1016/0300-9629(93)90507-Z
  17. Manzon, L. A., 2002. The role of prolactin in fish osmoregulation: a review. Gen. Comp. Endocrinol., 125, 291-310 https://doi.org/10.1006/gcen.2001.7746
  18. McCormick, S. D., 1995. Hormonal control of gill Na+, K+- ATPase and chloride cell function. (in) W. S. Hoar, D. J. Randall, A. P. Farrell (eds.), Fish Physiology, vol. 14. Academic Press, San Diego, pp. 285-315
  19. Min, B. H., B. K. Kim, J. W. Hur, I. C. Bang, S. K. Byun, C. Y. Choi and Y. J. Chang, 2003. Physiological responses during freshwater acclimation of seawater-cultured black porgy (Acanthopagrus schlegeli). Kor. J. Ichthyol., 15, 224-231
  20. Min, B. H., C. Y. Choi and Y. J. Chang, 2005. Comparison of physiological conditions on black porgy, Acanthopagrus schlegeli acclimated and reared in freshwater and seawater. J. Aquacult., 18, 37-44
  21. Nishioka, R. S., K. M. Kelley and H .A. Bern, 1988. Control of prolactin and growth hormone secretion in teleost fishes. Zool. Sci., 5, 267-280
  22. Pickford, G. E. and J. G. Phillips, 1959. Prolactin, a factor in promoting survival of hypophysectomized killifish in fresh water. Nature, 228, 378-379
  23. Rozakis-Adcock, M. and P. A. Kelly, 1991. Mutational analysis of the ligand-binding domain of the prolactin receptor. J. Biol. Chem., 266, 16472-16477
  24. Ruijter, J. M. and S. E. Wendelvaar Bonga, 1988. Allometric relation of total volumes of prolactin cells and corticotropic cells to body length in the annual cyprinodont Cynolebias whiei: effects of environmental salinity, stress and ageing. Cell Tissue Res., 249, 477-483
  25. Sandra, O., F. Sohm, A. De Luze, P. Prunet, M. Edery and P. A. Kelly, 1995. Expression cloning of a cDNA encoding a fish prolactin receptor. Proc. Nat'l. Acad. Sci. USA, 92, 6037-6041 https://doi.org/10.1073/pnas.92.13.6037
  26. Santos, C. R. A., L. Brinca, P. M. Ingleton and D. M. Power, 1999. Cloning expression, and tissue localization of prolactin in adult sea bream (Sparus aurata). Gen. Comp. Endocrinol., 114, 57-66 https://doi.org/10.1006/gcen.1998.7228
  27. Santos, C. R. A., P. M. Ingleton, J. E. Cavaco, P. A. Kelly, M. Edery and D. M. Power, 2001. Cloning, characterization, and tissue distribution of prolactin receptor in the sea bream (Sparus aurata). Gen. Comp. Endocrinol., 121, 32-47 https://doi.org/10.1006/gcen.2000.7553
  28. Warne, J. M. and R. J. Balment, 1995. Effect of acute manipulation of blood volume and osmolality on plasma [AVT] in seawater flounder. Am. J. Physiol., 269, R1107-R1112