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On the Global Convergence of Univariate Dynamic Encoding
Algorithm for Searches (uDEAS)

Jong-Wook Kim, Taegyu Kim, Joon-Young Choi, and Sang Woo Kim

Abstract: This paper analyzes global convergence of the univariate dynamic encoding algorithm
for searches (UDEAS) and provides an application result to function optimization. uDEAS is a
more advanced optimization method than its predecessor in terms of the number of neighborhood
points. This improvement should be validated through mathematical analysis for further research
and application. Since uDEAS can be categorized into the generating set search method also
established recently, the global convergence property of uDEAS is proved in the context of the
direct search method. To show the strong performance of uDEAS, the global minima of four 30
dimensional benchmark functions are attempted to be located by uDEAS and the other direct
search methods. The proof of global convergence and the successful optimization result
guarantee that uDEAS is a reliable and effective global optimization method.

Keywords: Direct search method, function optimization, generating set search, global
convergence, univariate dynamic encoding algorithm for searches (uDEAS).

1. INTRODUCTION

Consider the problem of finding a local minimizer
of a real valued function f(x). If f s

differentiable and the gradient of f at x, V/{(x),

can be computed or accurately estimated by finite-
differences, a wide selection of derivative-based
optimization methods is available. However, many
engineering  problems have unavailable or
untrustworthy Vf(x). In addition, other forms of

noise occur when the objective function involves
limited precision in the observed data, stochastic
variation, or unpredictable fluctuations from
experiments.

For these problems direct search methods have
been developed with an appreciable number of
successes since the 1950s. The direct search methods
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examine trial solutions involving a comparison of
each trial solution with the best solution obtained up
to that time together with a straightforward search
strategy for determining what the next trial solution
will be, as defined by Hooke and Jeeves [1]. Thus,
direct search methods are easy to implement with a
large number of variations. The compass search [2]
and the Nelder-Mead simplex algorithm [3] are well-
known direct search methods.

From the viewpoint of variable representation,
direct search methods are generally classified into the
methods with binary encoding and real encoding.
Binary encoding was originally employed in the
binary-coded genetic algorithm (BCGA) [4], while the
real-coded genetic algorithm (RCGA) adopted real
encoding, i.e., real values are directly used as
chromosome vectors [5,6]. Owing to the fact that
BCGA operates with long chromosomes made by the
concatenation of binary strings of each variable,
RCGA is known to be more suitable in terms of
solution  precision and  convenience  for
multidimensional and high-precision problems in real
space [5]. However, binary digits offer the maximum
number of schemata per bit of information of any
coding [4], which implies that BCGA is intrinsically
guided by similarities at certain string positions,
Moreover, the weakness mentioned above for BCGA
can be overcome by transforming real variables into a
binary matrix rather than a binary string and by
gradually elongating each row of the matrix to
increase space resolution.

As a combination of the direct search method and
BCGA, dynamic encoding algorithm for searches
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(DEAS) has been developed and applied to various
fields including parameter identification of an
induction motor [7], parameter optimization of state
vector machine [8], optimal design of a transformer
core [9], design of PID control [10], and the like.

The binary representation specific in DEAS has
another merit for revisit check. In the case the
objective function is expensive, i.e., function
evaluation consumes long computation time,
evaluation of formerly visited points should be
prevented in advance. There are two revisit check
routines in DEAS; redundancy check during local
search and history check during global search [11].
These routines are remarkably simple by adopting the
bit masking technique and concatenation of binary
rows into one string, respectively. Most global
optimization methods such as tabu search [12] and
GA [4] rarely possess these simple and effective
revisit check routines.

The initial version of DEAS, however, has the
problem of generating exponential number of trial
points with increase of dimension. The name
exhaustive DEAS (eDEAS) attributes to this search
aspect. As an alternative, univariate DEAS (uDEAS)
was developed with reference to the univariate
method [13] and found more precise solutions within
drastically shorter time than eDEAS. uDEAS
successfully performed within reasonable run time the
identification of 13 parameters in an induction motor
[14] and the estimation of 30 emission factors in a
billet heat transfer model [15]. For further research
and application with uDEAS, global and local
convergence analysis should be carried out. To this
end, this paper analyzes global convergence of
uDEAS with the methodology rigorously established
in the direct search methods.

To validate the applicability of uDEAS to real-
world high dimensional problems, four benchmark
functions with 30 variables are minimized by three
recent direct search methods including uDEAS, and
the search results are compared via function
evaluation numbers as performance measure.

This paper is organized as follows. Section 2
roughly describes the generating set search method
and its methodology of convergence analysis for
application to uDEAS. Section 3 provides a brief
explanation of uDEAS and a proof of global
convergence. Section 4 compares the search
performance of uDEAS with two competing direct
search methods in function optimization. Section 5
concludes the work with remarks and future work.

2. GENERATING SET SEARCH
This section provides a self-contained description

about the generating set search (GSS) which covers
most direct search methods with very inclusive

mathematical definitions and theorems [16]. GSS
includes the generalized pattern search method, which
covers as special cases the pattern search algorithms
of Hooke and Jeeves [1], the compass search [2],
multidirectional search [17], and the like. Since
uDEAS can also be interpreted by GSS, the theorems
and lemmas in this section will be adopted for
convergence analysis in uDEAS.

The unconstrained optimization problem {mini-
mization in this case) is defined as

minimize f(x),

where the function f:R” >R is the objective
function or the cost function, and the variables
xeR"” are those directly manipulated by an
optimization method.

In this paper, as in the nonlinear programming

literature, global convergence is used to mean that one
(or some, or all) of the limit points of the iterates from

arbitrary starting points is a stationary point x* of £,
ie., Vf(x")=0. In contrast, local convergence is

used to mean convergence when the initial point is
close enough to a minimizer.

Fig. 1 describes the algorithm of GSS. The core
principle of GSS is the rules for updating the iterate
x; and the step-length control parameter A, as

follows:

Xk +Akdk’ key (1)
X -
kil Xy, ke,
(PkAk, ke ‘
Ak'f'l = {8 Q k P (2)
JRAY S e /,
where .~ and # denote the subsequences of

successful and unsuccessful iterations, respectively,
and the expansion factor ¢, and the contraction

factor 0, in (2) have the properties of ¢ >1 and
0<0; €0, <1. The term successful means that

there exists a direction vector 4, €4, a set of

search directions, which satisfies the decrease
condition
SO +Apdy) < f(x) = p(Ag)- 3)

In (3) the nonnegative function pe[Q,+w) is
called the forcing function and must satisfy one of the
following two requirements. Either

p(r)=0 4
or
pis continuous, p(#)/t >0 as t — 0, and

5
pt) <plry) for 4 <ny. ®
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Initialization:
Let f:R" >R be given.

Let xo e R" be an initial guess.

generating set.
Let «

Algorithm: For each iteration k=1,2,---

- Setx; =X, (no change to the iterate).

-1f Ay, <A, then terminate.

Let A,; >0 be the step-length convergence tolerance.

Let Ay >A,, be the initial value of the step-length control parameter.

Let 6,,,, <1 be an upper bound on the contraction parameter.

Let the forcing function p:[0,+0)— R be a continuous function such that p(f) is decreasing as t— 0
and p(t)/t >0 as t—>0.Thechoice p=0 isacceptable.

Let Brax =Bmin >0 be upper and lower bounds, respectively, on the lengths of the vectors in any

min >0 be alower bound on the cosine measure of any generating set.

Step 1: Let =4 W 7. Here 4 is a generating set for R” satistying B <I1d{|<PBpax for all
dery and x(%)ZKp, ., and 7, is a finite (possibly empty) set of additional search
directions such that P, <||d|| forall de #.

Step 2: Ifthere exists 4, € &, suchthat f(x; +A,d;)< f(x;)—p(4;), then do the following:

- Set X ;1= x; +Apdy (change the iterate).
-Set A, =4 A,, where ¢, >1 (optionally expand the step-length control parameter).

Step 3: Otherwise, f(x; +Ard)< f(x;)—p(A,) forall dj € 4, so do the following:

-Set Ay, =6,A;, where 0<0; <8, <1 (contract the step-length control parameter).

Fig. 1. Algorithm of GSS.

Choosing p to be identically zero as in (4)

imposes a simple decrease condition on the
acceptance of the step. Otherwise, choosing p as in

(5) imposes a sufficient decrease condition. In uDEAS,
the simple decrease condition is used for acceptance
of iterates.

Each iteration of the GSS method described in Fig.

1 requires a set ¢, a generating set for R”, which

is also interpreted as a positive spanning set. The
definition of the generating set is written as follows.

Definition 1: Let « ={d"....d"""\ be a set of
p>n+1 vectorsin R”. Thenthe set ¢ generates

R" if for any vector veR"” there
A . AP) >0 such that

exists

v:ix(”d“}.

i=1

To span all the arbitrary #»-dimensional vectors,
the generating set must contain minimally »+1
vectors and maximally 2r vectors. In a fwo-
dimensional space, for example, the minimal and the

ST
w{ofla L

These generating sets are illustrated in Fig. 2.

The coordinate directions used in uDEAS include a
descent direction as shown below with the
generalization to arbitrary generating sets [18].

Lemma 1: The set - generates R" if and only
if for any vector veR” such that v#0, there

Fig. 2. Illustration of minimal and maximal generat-
ing sets for R
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exists d e ¢ such that

vid>o0.

The significance of Lemma 1 to GSS and uDEAS is
that at every iteration k£, there must be some d e
such that

~Vf () d > 0. (6)

This means that % is guaranteed to contain a

descent direction whenever Vf(x,)#0.
In the case of a general generating set «, the
cosine measure of ¢ denoted by «(¢) is an

important measure. Formally the cosine measure is
defined as

Y = 1} vid
k() = min max priqy: )

which indicates how far the steepest descent direction
v=-Vf(x) can be, in the worst case, from the vector

in ¢ making the smallest angle with v.

In terms of descent and cosine measure, (6) means
that for any generating set ¢, there must exist a
d € ¢ such that

IV < -V () d. (@)

Then as the cosine measure goes to zero, i.c., the
angle between de¢ and v=-Vf(x) approaches

90°, the quality of the descent direction in ¢
becomes poor and the iterates may converge
prematurely to a point that is not stationary.

In order to prove global convergence of the GSS
method, two steps are required. The first step is
showing that for any subsequence % of
unsuccessful iterations, i.e., % C v,

[V () 1= 0. 9)

lim A; =0 = lim
k=t k—+w
kewxvcw kexcr

The second step is only showing there is indeed a
subsequence of step-length control parameters going
to zero as

lim A, =0. (10)
k—>+0
kexco

The above steps are applied to uDEAS to prove
global convergence in the following section.

3. GLOBAL CONVERGENCE OF UDEAS
3.1. uDEAS

uDEAS is a global optimization method that
possesses local and global search strategies. As the

global search strategy, uDEAS adopts the multistart
method where the local search is iterated from random
points scattered over the search space. After
conducting a finite number of local searches from
selected random points, uDEAS attains a global
minimum that is the best of the local minima found so
far. Since uDEAS uses binary representation, i.e.
search space is divided by finite grids; a random
initial point is one of the intersection points of the
grids. Therefore, initial points should be checked to
determine if they were previously evaluated to avoid
unnecessary cost evaluation. To this end, the routine
named HISTORY CHECK is easily implemented in
uDEAS by concatenating all the rows in initial
variable matrices into one string which is then
transformed to an integer number, storing it in
memory, and comparing it with corresponding
integers of former matrices.

For example, consider that HISTORY CHECK is
carried out for the following binary matrix at the third
restart. The resultant binary string concatenated can be
decoded into 28 with base 2 like the following:

p® :{0 : 1}:»[0 1110 0]=28
1 00

Then the representative number 28 is compared with

those of the binary matrices optimized at previous

restarts, which have the same row length. Assume that

at the first and the second restarts optimal matrices are

constructed as the followings:

010 0
p" = (=22), D¥ =
110 1

1

= 28).
s
Since the second matrix has the same integer number
28, which implies its binary matrix is also the same,

the matrix D® is decided as a revisited matrix. For

computational efficiency, no more search from p®
is conducted, and uDEAS restarts from another
random point. All these routines constitute HISTORY
CHECK.

The global optimization performance of HISTORY
CHECK is quite strong for code simplicity. Since this
paper deals with the global convergence in performing
local search, analysis on global search is deferred.

The local search strategy in uDEAS comprises a
bisectional search (BSS) and a unidirectional search
(UDS). BSS comes from the property that insertion of
0 (or 1) at the right position of LSB in a binary
number leads to a decrease {or increase) of
transformed real values from that of the original
binary number. The following theorem describes the
above property, which is proved in [11].

Theorem 1: Let an » -bit-long binary string,

s, =a,a,_-a, a{0,1}, i=1---,n, be termed a

P
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parent string. If 0 is added to the LSB of s,, the

new string is termed a ‘left-hand child string’, s

On the other hand, if 1 is added, it is termed a ‘right-
hand child string’, s,

.-
into normalized real numbers within 0 and 1 by the
following decoding function

Sl -++by) = —

If these strings are decoded

b2, (11)

2" 15

where
b e{0,1}, i=1-m,
their relations are described as
Fa(se) < f(s,) < Sa(sD),

where the left- and right-hand side equalities hold
only if s, are an all-zero string and an all-one string,

respectively,

BSS is compared to yielding child strings which
probe the adjacent search area in a bidirectional
manner. The encoding function (11), however, makes
the real-valued differences between a parent string
and its two child strings vary according to the position
of the parent string in the tree [19]. This unbiasedness
deteriorates a symmetry condition and complicates the
convergence analysis of uDEAS. Thus, the following
unbiased binary decoding function proposed in [19] is
adopted for analysis

Ja b "'MZ;;%{Zbﬂj +1J- (12)
j=1

Fig. 3 shows the unbiased tree structure established
with nodes and branches which represent binary
strings and BSS directions, respectively. Although
BSS retains a high convergence rate, successive BSS
confines a search range within a limited area such that
0—-01-011—>--—0I1--111.

UDS is employed to supplement this in-depth
search of BSS by hopping between horizontal nodes
in a promising direction. This hopping is implemented
by increment addition or decrement subtraction to a
binary string or a row of a binary matrix. UDS is
iterated, maintaining search resolution, until no better
point is found, while BSS doubles the resolution at

0 1
(1/4) (3/4)
\\
00 01 10 11
(1/8) (38) (5/8) o)
», N 3
N SN N VRN
[40:4} 001 010 011 100 101 110 111

(118) (3/118)  (5116)  (THB) (918} (11168} (13/16) (15/16)

Fig. 3. Unbiased binary tree used in uDEAS.

each transition. Owing to the complementary property
of UDS, a combination of single BSS and multiple
UDS is used in DEAS at every increase of string
length.

Fig. 4 shows the working principles of BSS and
UDS in uDEAS with the pseudo-code for an initial

. . * . . . .
binary matrix D,,, where » is variable dimension

and k is row length. It should be noted that for
multi-dimensional problems uDEAS stacks binary
strings into a matrix, while GA concatenates them into
a single chromosome string [4]. For the i-th step, the
i-th binary row representing the i-th variable is

selected from the current best pseudo-matrix D* and
is modified by BSS and UDS. UDS is guided by the

optimal direction of d,, (i) computed by BSS, until

no better solution is found.

After termination of UDS for the i-th row, the
(i +1)-th row is selected, and the BSS-UDS pair is
performed in the same way. It is worth noting that the
resultant i-th row whose length is £ +1 replaces the
old best i-th row whose length is k. This implies that
the current best variable is described by a pseudo-
matrix whose rows that have been treated by the
search are lengthened by one. When all the rows have
been lengthened equally, the pseudo-matrix becomes a

regular matrix D;x( k1)

The term session in uDEAS means that BSS and
UDS have been carried out for all the variables,
increasing the row length by one as shown in Fig. 4.
The sessions are iterated from initial string length
(initLen) to final string length (finLen) in order to
complete the local search from a given initial binary
matrix:

Randomly generate an initial binary matrix; T,iren
For m=initLen: finLen
Tox(m+1) =SESSION (T,,,,)

n

end for

Fig. 5 illustrates a session for a two-dimensional
problem whose minimizer is located at the star point.
The number of dashed grids is four in the case of the
row length of a starting matrix to be two, while the
dotted grids represent that the row length of their child
matrices is increased to three. Fig. 5(a) and Figs. 5(b)-
(d) show search aspects of BSS and UDS in x
direction, respectively. BSS finds out that the right
direction is promising and hands it over to UDS. At
the third iteration of UDS the cost function of the
point depicted with a white circle is no more
decreased and thus UDS for x; is stopped. Then BSS

is carried out along the x, direction, followed by

UDS as shown in the Figs. 5(e)-(h). As a result,
uDEAS computed the cost function 10 times in
locating the local minimizer.
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D, z+1) = SESSION(D;,,)

*

Decode the initial matrix: D" —40 .
for i=1:n
BSS:
Load the i-th row of current best matrix: r,,, = D*(i,1: k).
for j=0:1
Load the current best variable vector into a temporary vector: 8') 0"

Add a binary bit j to the i-th row vector; s g() kD)= [r j].
Update the variable vector with the decoded i-th variable; 8¢)(i) = £, (s'/).

Evaluate the cost of a new variable vector; J )= f (eU ))

end
Compare the cost values; J* = min(J SO (1))
1£3°=J© then

d,,()=0,5" =5 0" =0

else
d,, () =15 =5, 0" =00,
end if
UDS:
while a better solution is sought do
6 0"

ifd,,(})=0 then s’ =s" —1.

else s’=s " +1.
end if

ifJ<J* then
s s, J «J,0"=0.
else Stop UDS

end if
end while

end for

Update the variable vector by decoding the i-th variable; 8'(i) = f;(s').
Evaluate the cost of a new variable vector; J = f{8")

Save the i-th best row into the current best pseudo-matrix: D*(i,1: k +1) =s"

Fig. 4. Local search algorithm of uDEAS.

uDEAS is somewhat different from GSS via a
rational lattice [20] which stretches 2n directions at
every update of iterates as shown in Fig. 6. Therefore,
GSS will evaluate the cost function 24 times to locate
the local minimizer. Comparing Figs. 5 and 6 leads to
the fact that GSS inevitably revisits one point at each
iteration.

The update rule of uDEAS is described as
(13)

X _ Xi +Akdk7 ke.%fBSS OrkE.VUDS
k+1 — .
* Xps ke/@Ds,

where . ¥pgs and % denote subsequences of

iterations at BSS and successful iterations at UDS,
respectively, and #;¢ denotes subsequences of
unsuccessful iterations at UDS. The direction vector
d; in (13) is one of the 2n coordinate directions
such that dj € 9 ={e,e), **,€,,~€,—€5, ", =€y}

For instance, all the direction vectors in three
dimensions are arranged as
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(a) BSS in x; direction. (b) First UDS in x; (¢) Second UDS in x, (d) Third UDS in x;
direction. direction. direction.

(e) BSS in x; direction. (f) First UDS in x; (g) Second UDS in x; (h) Third UDS in x;
direction. direction. direction.

Fig. 5. [llustration of uDEAS for a two-dimensional problem on the underlying lattice.

: \*— .................. Az; ....... ¥ Y—
_ <\
- o =

(a) &=0 (b) k=1 (c) k=2

113
g SR
(d) k=3 (e) =4 (contraction) ) i=5

Fig. 6. lllustration of GSS for a two-dimensional problem on the underlying lattice. k denotes the iteration

number.

The step-length control parameters A, in (13) are

directly associated with the row length of the current
binary string and the search phase, i.e., BSS or UDS;
In the case that BSS is done to an m -bit binary string,
the resultant step-length parameters for the current
BSS and the subsequent UDS will be

1

1
Ak =5 M =

which implies that A, =2A,.

With regard to UDS, there exist two cases;
successful and unsuccessful UDS. For the successful
UDS with an {(m +1) -bit binary string, the following

relations are obtained

1 1
Bie = Bt = i
Thus, A;,;=A;. However, in the case of an
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unsuccessful UDS, BSS is subsequently carried out
after changing the search direction along the next
variable’s axis. If the current session is incomplete,
i.e., the current variable is not x,, the string length

of the next binary string for BSS changes from m+1
to m. Thus the step-length parameters correspond to

1
Ak_ 1

N 2m+1 ’ k+l

1
~§2m+1 ?

with the relation of A, :%Ak.

current session is complete with (m +1) -bit rows, the

Finally, if the

resultant string after BSS becomes (m+2)-bit long,
1_1

which implies that A, T Comparing it with
-1
k 2m+l

gives the relation of A, ;) = %A .

A summary of the above behaviors of the step-
length control parameters under various situations
establishes the following relations:

ZAk’ ke WBSS’
Ay, kevups
Ak+1 = ';—Ak, ke ZUDS’ (14)
1 —
ZAk, k [S Y UDS
where e denotes the subsequence of

unsuccessful UDS for the last variable x,, which
completes each session.

3.2. Global convergence analysis
In order to prove global convergence of uDEAS

according to (9), the relation between Vf(x;) and
A, should be established. The following theorem
shows that a norm of Vf(x;) is bounded above by
A;. For simplicity, we assume Vf(x;) is Lipschitz
continuous and || d||<P,. forall deg.

Theorem 2: Let f:R”" >R be continuously
Vf (x)

continuous with constant M. Then uDEAS produces
iterates such that for any % C7ps\Vypss We

differentiable, and suppose is Lipschitz

have
| V(3 ) 1< MABray .-
Proof: Choose j, €4 C ¢ satisfying (8). Such a

dy existsbecause 4 generates R”; so,

KO IVLED I 3 1 <=V )T 3,

The cosine measure of the coordinate directions is

k(s)= —\/17 [2], and uDEAS searches along only one

direction, i.e., n=1. Therefore the above relation
becomes

IVF G Ml @ Il <=V Ge) 3

By the mean value theorem, for some a,; €[0,1],

O +Ardy) = Fa) =MV O + 08 3 dye

Because £ is an unsuccessful iteration for the simple
decrease condition,

0< [ +Axd )= f0x):

Putting the last two relations together, dividing
through by A;, and subtracting Vf(x; )y d; from
both sides yields

Vf () < (7 O + B d ) =V ) e
From this, the following is attained

IV G 1< (FF O + 0, Ag 3 = Vo) g
Then

IV Qo) I <NV G+ 0B @) =V ()l
<MA Nl dyll-
O

The next step is showing (10) for uDEAS. To show
that the simple decrease condition (3) forces a

subsequence of A,’s to 0, the only requirement is
that f is bounded below.

Theorem 3: Let f be bounded below. Then
uDEAS produces iterations satisfying

liminf Ay =0.

k—»o0

Proof: Suppose not. Then there exists A, >0
such that A, >A, for all
updating rule for A, given in (14), the existence of
A, >0 implies that the number of BSS and

successful iterations must be infinite.

What is distinctive in uDEAS is that in BSS all the
neighborhood points are relatively compared with
each other, which implies that in some cases a slightly
worse point than the center or incumbent point can be
selected. This deterioration may be due to ruggedness
rarely present in the landscape of cost function, but it
can be easily overcome by the UDS that follows.
Therefore, BSS produces both successful and
unsuccessful, though it is not often the case,
subsequences denoted 3¢¢ and 7pgg, respectively.

k. Considering the

As a whole, the relation of cost function at an
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updated point can be classified as

F ) <f(x)y ke sss Y ps,
Jxee) = f(x0), ke 4ps,
J ) > f(xp)s k€ g

The second case is due to the fact that, after an
unsuccessful UDS, x,., is remained at x;, as
shown in (13).

It is evident from the first case that if the number of
successful iterations is infinite, then f(x;)— —oo,

which contradicts the assumption that f is bounded

below. Hence, the claim.

The objective functions minimized by eDEAS and
ubDEAS so far are the sum squared values of the errors
between measured data and predicted output signals
computed by the mathematical model [7] and the
absolute deviations between desired values and
controlled values [10]. Since the sum squared errors
are always nonnegative, the requirement of f to be

bounded below is satisfied. Therefore, Theorem 3 is
valid, and uDEAS is globally convergent as

im  VAGlI=0.
k—>+m
ke # s U//UDS
4. OPTIMIZATION RESULT

In order to wvalidate the reliability and the
performance of uDEAS, function optimization for
relatively high-dimensional benchmark functions is
carried out in this section. In the latest literature,
uDEAS successfully located the global minima of ten
test functions whose dimensions vary from 2 to 30
[21]. Specifically in high dimensions, it is reported
that uDEAS outperforms eDEAS as expected.

Since uDEAS can be classified as a direct search
method, performance comparison with the most recent
direct search method named mesh adaptive direct
search (MADS) [22] is also significant. Therefore
function evaluation numbers required for the three
optimization methods, i.e., GSS, MADS, and uDEAS,
to locate the known global minima are compared as a
performance measure.

Four 30-dimensional benchmark functions are
selected in this experiment from the well-known
literature of the evolutionary programming [23]:

* Sphere Model

0,
Ax)=2x
i

The global minimum value £}’

x =[0,--

is 0 at the point

-,0], and each variable is bounded as

-100<x, <100, i=1,---,30.
¢ Schwefel’s Problem

30 30
ZICEDYEAES § (B!
par i=1

The global
0], and xe[-10,10]°.
* Ackley’s Function

f3(x)——20exp[ 0.2 fg—Zx }
i=1

—exp[3 Zcos(an ) ]+20+e
i=i

minimum value £, is 0 at

x =[0,-,

The global minimum value f; is 0 at the point
x" =0, and xe[-32,32]%°.

¢ Qeneralized Griewank Function

Ja(x )‘mz x? Hcos( ]

The global minimum value f; is 0 at the point
x =0, and the variable bound is xe[-600,

6001

GSS is coded in a standard manner such that in (2)
the expansion factor ¢ is set at 1 and the

contraction factor 0; is set at 0.5 for the simple

decrease condition, i.e., p(f)=0 in accepting iterates.
In order to maximize search performance, 2rn (=60)

vectors are created as the generating set ¢ at the

k -th iteration.
The structural difference of MADS over GSS lies in

Table 1. Average function evaluation numbers and
successful trial numbers attained by GSS,
MADS, and uDEAS in locating the global
minima of each test function. The values in
parentheses are the number of successful
local searches during 20 independent restarts.
For successful trials, function evaluation
numbers are summed and averaged.

Test Optimization method
function GSS MADS | uDEAS
N 18925 (20) | 28816 (20) | 1787(20)
i) 27550 (20) | 40330 (19) | 2806(20)
5 25831 (8) | 40273 (5) | 6641 (20)
fa 19149 (9) | 31581 (6) | 1786 (20)
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the addition of the poll step that generates a dense set
for producing a constrained Clarke stationary point

[22]. In MADS, the poll size parameter A,f is

introduced to dictate the magnitude distance from the
trial points generated by the poll step to the current

incumbent solution. The strategy for

updating A?

keK

In this

paper,
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must be such that A} <A? forall k, satisfying the
following condition:

lim A}’ =0 if and only if llcim AP =0.
ek

LTMADS [22], a stochastic

function value

function value

function value
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% 05 1 15 2 25 [} 05 1 15 2 25 3 35 0 200 400 600 80O 1000 1200 1400 1600 1800
function evaluation number x10° furietion evaluation number x10* tunction evaluation number
(a) GSS for f; (b) MADS for f; (c) uDEAS for £
10" 1o®
v
102 10
&0
10 10
15
10
2 g0 E 3
] g g .
5 %f, _g 10
9 5
50 5 L
0
10
10°
s
10 10°
107 w0 . .
0 05 1 15 2 25 3 3 4 5 7 0 500 1000 1500 2000 2500 3000
function evaluation number x10" funetion svaluation number x10* funetion evaluation number
(d) GSS for £, (e) MADS for £, (f) uDEAS for £
10° 10° W
10° 10° 1o
8107 ERCH 3 10°
s g 2
s § 5
3 g 3
LRl S 10 S 10
10° 10° 107"
10 10° 10
0 05 1 . 25 3 ¢ 05 1 5 2 25 3 35 4 45 0 05 1 1.5 2 25
function evaluation number x 30 function evaluation number x 10 fungtion evaluation number x 10
(g) GSS for £ (h) MADS for f; (i) uDEAS for f;
10* 10* 10'
10°
10°
H H 2
g H L
H] H 5 10"
w0t
107
10° 10° 107
0 [ 1 1.5 2 25 3 35 4 0 1 2 4 5 [ 0 200 400 600 8OO 1000 1200 1400 1800 1800
functicn evaluation number x10" function evaluation number x10* function evaiuation number
.
(j) GSS for f; (k) MADS for f; (1) uDEAS for f;

Fig. 7. Multistart search aspects of GSS, MADS, and uDEAS for the test functions over 20 independent trials.
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implementation of the MADS algorithm, is coded and
employed for function optimization. By following the

guide, Af =1,Af =1 are chosen as initial values,

and the lower triangular matrix B, where each term

on the diagonal is either plus or minus —— with the

[Am
Ak

integral lower components randomly selected in the

open interval }——1— -—‘—1:, are again permuted by

A’ Jam
lines and columns. As a completion to a positive basis
for this poll step, the maximal positive bases of 2n
directions are constructed like GSS.

For global optimization, the multistart approach is
commonly applied to the three methods by selecting
an initial point randomly in a search space, iterating a
local search from it to the prescribed limit, and
restarting this routine from another random point.
After termination of the multiple restarts, the best
local minimum found so far is regarded as a global
minimum. Termination criterion is whether the
solution accuracy, i.e., difference between the current

function value and the global minimum value f *is

below 107 or whether the number of restarts is over
20.

Table 1 summarizes the function optimization result
attained after 20 independent restarts per experiment.
Fig. 7 shows the overall global optimization aspects
with respect to function evaluation numbers. GSS

searches reliably for £ and f;, while the success

ratios are below 50 percent for f; and f,. MADS

yields a slightly worse result in terms of both the
function evaluation numbers and the success ratios.
The results of uDEAS are, however, about nine times
faster than GSS with excellent reliability.

Although this type of comparison may not be
perfectly fair due to the possible lack of optimality in
parameter setting for each method, it is justifiable to
conclude that uDEAS is sufficiently feasible for the
global optimization of an unconstrained multimodal
problem with short running time.

5. CONCLUSION

This paper provides a rigorous proof of global
convergence for uDEAS and performance comparison
with other direct search methods, GSS and MADS, in
the area of function optimization. Despite the simple
working principle of uDEAS for global optimization,
the success in function optimization up to 30
dimensions provided in this paper is quite promising.

Based on the guarantee of global convergence and
the fast and reliable result of function optimization,
uDEAS will be more widely used in the optimal

trajectory generation of robots, real-time identification,
real-time control, and the like. As a future work, local
convergence and convergence rate will be analyzed
for uDEAS and the other DEAS series.
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