DOI QR코드

DOI QR Code

Electrochemical Properties of LiMPO4(M = Fe, Mn) Synthesized by Sol-Gel Method

졸-겔법에 의해 제조된 LiMPO4(M = Fe, Mn) 양극 활물질의 전기화학적 특성

  • Kim, Jae-Kwang (Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Baek, Dong-Ho (Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Shin, Yong-Jo (Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Ahn, Jou-Hyeon (Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Seo, Yang-Gon (Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Chi-Su (VK-EIG) ;
  • Yoon, Seok-Jun (VK-EIG) ;
  • Cho, Myung-Hun (VK-EIG)
  • 김재광 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 백동호 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 신용조 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 안주현 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 서양곤 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 김지수 (브이케이이아이지주식회사) ;
  • 윤석준 (브이케이이아이지주식회사) ;
  • 조명훈 (브이케이이아이지주식회사)
  • Published : 2008.05.31

Abstract

Carbon-coated $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ cathode materials for lithium batteries were synthesized by a sol-gel method. X-ray diffraction and scanning electron microscopy data showed that the cathode materials are pure crystalline and are surrounded by porous carbon. The initial discharge capacities of $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ with the liquid electrolyte of 1M $LiPF_6$ in EC/DMC are 132 mAh/g and 145 mAh/g, respectively, at current density of 0.1 C-rate. $LiFePO_4$ and $LiMn_{0.4}Fe_{0.6}PO_4$ with an electrospun polymer-based electrolyte exhibit initial discharge capacities of 114 and 130 mAh/g at 0.1 C-rate at room temperature, respectively.

리튬이차전지의 양극 활물질로 카본 코팅된 $LiFePO_4$$LiMn_{0.4}Fe_{0.6}PO_4$를 졸-겔방법으로 합성하였다. 제조된 양극 활물질을 X-선 회절분석과 주사전자현미경을 통하여 불순물이 존재하지 않으며 기공이 잘 발달되어 있다는 것을 확인하였다. 액체전해질을 사용하여 0.1 C-rate의 전류밀도에서 충방전하였을 경우 $LiFePO_4$는 132 mAH/g, $LiMn_{0.4}Fe_{0.6}PO_4$는 145 mAh/g의 방전용량을 각각 나타내었다. 전기방사에 의해 만들어진 겔 고분자 전해질을 사용하였을 경우에 $LiFePO_4$$LiMn_{0.4}Fe_{0.6}PO_4$는 각각 114, 130 mAh/g의 우수한 방전용량을 나타내었다.

Keywords

References

  1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem Soc., 144, 1188 (1997) https://doi.org/10.1149/1.1837571
  2. N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, and M. Armand, Abstract 127, The Electrochemical Society and The Electrochemical Society of Japan Meeting Abstracts, Vol. 99-2, Honolulu, HI, Oct 17-22 (1999)
  3. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik, and J. Jamnik, J. Power Sources, 153, 274 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.033
  4. J. K. Kim, G. Cheruvally, J. W. Choi, J. U. Kim, J. H. Ahn, G. B. Cho, K. W. Kim, and H. J. Ahn, J. Power Sources, 166, 211 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.089
  5. J. K. Kim, J. W. Choi, G. Cheruvally, J. U. Kim, J. H. Ahn, G. B. Cho, K. W. Kim, and H. J. Ahn, Mater. Lett., 61, 3822 (2007) https://doi.org/10.1016/j.matlet.2006.12.038
  6. J. Chen and M. S. Whittingham, Electrochem. Commun., 8, 855 (2006) https://doi.org/10.1016/j.elecom.2006.03.021
  7. S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, and H. K. Liu, Mater. Lett., 58, 1788 (2004) https://doi.org/10.1016/j.matlet.2003.11.008
  8. M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, and M. Suhara, J. Power Sources, 119-121, 258 (2003) https://doi.org/10.1016/S0378-7753(03)00243-X
  9. J. K. Kim, G. Cheruvally, and J. H. Ahn, J. Solid State Electrochem., in press (2008)
  10. A. Yamada and S. C. Chung, J. Electrochem. Soc., 148, A960 (2001) https://doi.org/10.1149/1.1385377
  11. A. Yamada, Y. Kudo, and K. Y. Liu, J. Electrochem. Soc., 148, A1153 (2001) https://doi.org/10.1149/1.1401083
  12. Y. J. Shin, J. K. Kim, G. Cheruvally, J. H. Ahn, and K. W. Kim, J. Phys. Chem. Solids., 69, 1253 (2008) https://doi.org/10.1016/j.jpcs.2007.10.073
  13. G. B. Appetecchi, F. Croce, and B. Scrosati, J. Power Sources, 66, 77 (1997) https://doi.org/10.1016/S0378-7753(96)02484-6
  14. T. H. Cho, T. Sakai, S. Tanase, K. Kimura, Y. Kondo, T. Tarao, and M. Tanaki, Electrochem. Solid State Lett., 10, A159 (2007) https://doi.org/10.1149/1.2730727
  15. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, J. Electrochem. Soc., 152, A295 (2005) https://doi.org/10.1149/1.1839531
  16. X. Li, G. Cheruvally, J. K. Kim, J. W. Choi, J. H. Ahn, K. W. Kim, and H. J. Ahn, J. Power Sources, 167, 491 (2007) https://doi.org/10.1016/j.jpowsour.2007.02.032
  17. J. W. Choi, G. Cheruvally, Y. H. Kim, J. K. Kim, J. Manuel, P. Raghavan, J. H. Ahn, K. W. Kim, H. J. Ahn, D. S. Choi, and C. E. Song, Solid State Ionics, 178, 1235 (2007) https://doi.org/10.1016/j.ssi.2007.06.006
  18. J. K. Kim, G. Cheruvally, X. Li, J. H. Ahn, K. W. Kim, and H. J. Ahn, J. Power Sources, 178, 815 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.063
  19. J. K. Kim, G. Cheruvally, J. H. Ahn, and H. J. Ahn, J. Phys. Chem. Solids., 69, 1257 (2008) https://doi.org/10.1016/j.jpcs.2007.10.047