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COMMON FIXED POINT THEOREM FOR MULTIVALUED
MAPPINGS IN INTUITIONISTIC FUZZY METRIC SPACE

Sushil Sharma and Prashant Tilwankar

Abstract. The purpose of this paper is to prove common fixed point the-
orem for multivalued mappings satisfying some conditions in intuitionistic
fuzzy metric space in the sense of Alaca et al.

1. Introduction

In 1965, the concept of fuzzy sets was introduced initially by Zadeh [27].
Since then, many authors have expansively developed the theory of fuzzy sets
and applications. Especially, Deng [5], Erceg [7], Kaleva and Seikkala [13],
Kramosil and Michalek [15] have introduced the concept of fuzzy metric spaces
in different ways. Grabiec [10] followed Kramosil and Michalek [15] and ob-
tained the fuzzy version of Banach contraction principle. Fang [8] proved some
fixed point theorems in fuzzy metric spaces, which improve, generalize, unify
and extend some main results of Banach [2], Edelstein [6], Mishra et al. [19]
obtained common fixed point theorems for compatible maps on fuzzy metric
spaces. Sharma [23] proved common fixed point theorems for six mappings sat-
isfying some conditions in fuzzy metric spaces. Many authors have also studied
the fixed point theory in these fuzzy metric spaces [3], [4], [9]. Fixed point
for multivalued mappings in fuzzy metric space is studied by Kubiaczyk and
Sharma [17]. Alaca et al. [1] using the idea of intuitionistic fuzzy sets, they
defined the notion of intuitionistic fuzzy metric space as Park [20] with the help
of continuous t-norms and continuous t-conorms as a generalization of fuzzy
metric space due to Kramosil and Michalek [15]. Further, they introduced the
notion of Cauchy sequences in an intuitionistic fuzzy metric space and proved
the well-known fixed point theorems of Banach [2] and Edelstein [6], for intu-
itionistic fuzzy metric spaces with the help of Grabiec [10]. Turkoglu et al. [24]
gave generalization of Jungck’s common fixed point theorem [12] to intuition-
istic fuzzy metric spaces. Turkoglu et al. [25] defined compatible mappings
of type (α) and (β) in intuitionistic fuzzy metric spaces. Gregori et al. [11],
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Saadati and Park [21] studied the concept of intuitionistic fuzzy metric space
and its applications.

In this paper we prove common fixed point theorem for multivalued map-
pings satisfying some conditions in intuitionistic fuzzy metric space in the sense
of Alaca et al. [1].

2. Preliminaries

Definition 1 ([22]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is continuous
t-norm if ∗ is satisfying the following conditions:

(i) ∗ is commutative and associative,
(ii) ∗ is continuous,
(iii) a ∗ 1 = a for all a ∈ [0, 1],
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Definition 2 ([22]). A binary operation ⋄ : [0, 1] × [0, 1] → [0, 1] is continuous
t-conorm if ⋄ is satisfying the following conditions:

(i) ⋄ is commutative and associative,
(ii) ⋄ is continuous,
(iii) a ⋄ 0 = a for all a ∈ [0, 1],
(iv) a ⋄ b ≤ c ⋄ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Remark 3. The concept of triangular norms (t-norms) and triangular conorms
(t-conorms) are known as the axiomatic skeletons that we use for characterizing
fuzzy intersections and unions, respectively. These concepts were originally
introduced by Menger [18] in his study of statistical metric spaces. Several
examples for these concepts were proposed by many authors including [14],[26].

Definition 4 ([1]). A 5-tuple (X, M,N, ∗, ⋄) is said to be an intuitionistic
fuzzy metric spaces if X is an arbitrary set, ∗ is a continuous t-norm, ⋄ is a
continuous t-conorm and M, N are fuzzy sets on X2 × [0,∞) satisfying the
following conditions for all x, y, z ∈ X and t, s > 0,

(i) M(x, y, t) + N(x, y, t) ≤ 1,
(ii) M(x, y, 0) = 0,
(iii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
(iv) M(x, y, t) = M(y, x, t),
(v) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s),
(vi) M(x, y, .) : [0,∞) → [0, 1] is left continuous,
(vii) limt→∞ M(x, y, t) = 1 for all x, y in X,
(viii) N(x, y, 0) = 1,
(ix) N(x, y, t) = 0 for all t > 0 if and only if x = y,
(x) N(x, y, t) = N(y, x, t),
(xi) N(x, y, t) ⋄ N(y, z, s) ≥ N(x, z, t + s),
(xii) N(x, y, .) : [0,∞) → [0, 1] is right continuous,
(xiii) limt→∞ N(x, y, t) = 0 for all x, y in X.
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Then (M, N) is called an intuitionistic fuzzy metric on X. The functions
M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-
nearness between x and y with respect to t, respectively.

Remark 5. Every fuzzy metric space (X, M, ∗) is an intuitionistic fuzzy metric
space of the form (X, M, 1 − M, ∗, ⋄) such that t-norm ∗ and t-conorm ⋄ are
associated [16], i.e., x ⋄ y = 1 − ((1 − x) ∗ (1 − y)) for all x, y ∈ X.

Example 6. Let (X, d) be a metric space. Define t-norm a ∗ b = min{a, b}
and t-conorm a ⋄ b = max{a, b} and for all x, y ∈ X and t > 0,

Md(x, y, t) =
t

t + d(x, y)
, Nd(x, y, t) =

d(x, y)
t + d(x, y)

Then (X, M, N, ∗, ⋄) is an intuitionistic fuzzy metric space. We call this intu-
itionistic fuzzy metric (M, N) induced by the metric d the standard intuition-
istic fuzzy metric.

Remark 7. In intuitionistic fuzzy metric space X, M(x, y, .) is non-decreasing
and N(x, y, .) is non-increasing for all x, y ∈ X.

Definition 8 ([1]). Let (X, M, N, ∗, ⋄) be an intuitionistic fuzzy metric space.
Then

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X
(denoted by limn→∞xn = x) if, for all t > 0,

lim
n→∞

M(xn, x, t) = 1, lim
n→∞

N(xn, x, t) = 0.

(ii) A sequence {xn} in X is said to be Cauchy sequence if, for all t > 0
and p > 0,

lim
n→∞

M(xn+p, xn, t) = 1, lim
n→∞

N(xn+p, xn, t) = 0.

Remark 9. Since ∗ and ⋄ are continuous, the limit is uniquely determined from
(v) and (xi), respectively.

Definition 10 ([1]). An intuitionistic fuzzy metric space (X, M, N, ∗, ⋄) is said
to be complete if and only if every Cauchy sequence in X is convergent.

Lemma 11 ([1]). Let (X, M, N, ∗, ⋄) be an intuitionistic fuzzy metric space
and {xn} be a sequence in X. If there exists a number k ∈ (0, 1) such that

M(xn+2, xn+1, kt) ≥ M(xn+1, xn, t), N(xn+2, xn+1, kt) ≤ N(xn+1, xn, t)

for all t > 0 and n = 1, 2, . . ., then {xn} is a Cauchy sequence in X.

Lemma 12 ([1]). Let (X, M, N, ∗, ⋄) be an intuitionistic fuzzy metric space
and for all x, y ∈ X, t > 0 and if for a number k ∈ (0, 1),

M(x, y, kt) ≥ M(x, y, t) and N(x, y, kt) ≤ N(x, y, t)

then x = y.
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Kubiaczyk and Sharma [17] introduced the following concept of multivalued
mappings in the sence of Kramosil and Michalek [15]. We denote by CB(X)
the set of all non-empty, bounded and closed subset of X. We have

M▽(B, y, t) = max{M(b, y, t) : b ∈ B}

N△(B, y, t) = min{N(b, y, t) : b ∈ B}

M▽(A,B, t) ≥ min{min
a∈A

M▽(a,B, t), min
b∈B

M▽(A, b, t)}

N△(A,B, t) ≤ max{maxa∈AN△(a,B, t),max
b∈B

N△(A, b, t)}

for all A,B in X and t > 0.
Now we prove common fixed point theorem for multivalued mappings satis-

fying some conditions in intuitionistic fuzzy metric space in the sense of Alaca
et al. [1].

3. Main Result

Theorem 13. Let (X,M,N, ∗, ⋄) be a complete intuitionistic fuzzy metric
space with continuous t-norm ∗ and continuous t-conorm ⋄ defined by t ∗ t ≥ t
and (1 − t) ⋄ (1 − t) ≤ (1 − t), for all t ∈ [0, 1]. Let F1, F2, F3 : X → CB(X)
satisfying, (3.1) there exists a number k ∈ (0, 1) such that

M▽(F1x, F2y, kt) ≥ min{M(x, y, t),M▽(x, F1x, t),M▽(y, F2y, t),

M▽(x, F2y, (2 − α)t),M▽(y, F1x, t),

M▽(x, F3y, (2 − α)t),M▽(y, F3y, t)}

and

N△(F1x, F2y, kt) ≤ max{N(x, y, t), N△(x, F1x, t), N△(y, F2y, t),

N△(x, F2y, (2 − α)t), N△(y, F1x, t),

N△(x, F3y, (2 − α)t), N△(y, F3y, t)}

for all x, y ∈ X, α ∈ (0, 2) and t > 0. Then F1, F2 and F3 have a common
fixed point .

Proof. Let x0 be an arbitrary point in X and x1 ∈ X is such that x1 ∈ F1x0

and

M(x0, x1, kt) ≥ M▽(x0, F1x0, kt) − ϵ,

N(x0, x1, kt) ≤ N△(x0, F1x0, kt) + ϵ,

x2 ∈ X is such that x2 ∈ F2x1 and

M(x1, x2, kt) ≥ M▽(x1, F2x1, kt) − ϵ

2
,

N(x1, x2, kt) ≤ N△(x1, F2x1, kt) +
ϵ

2
,
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x3 ∈ X is such that x3 ∈ F3x2 and

M(x2, x3, kt) ≥ M▽(x2, F3x2, kt) − ϵ

22
,

N(x2, x3, kt) ≤ N△(x2, F3x2, kt) +
ϵ

22
.

Inductively x2n+1 ∈ X is such that x2n+1 ∈ F1x2n and

M(x2n, x2n+1, kt) ≥ M▽(x2n, F1x2n, kt) − ϵ

22n
,

N(x2n, x2n+1, kt) ≤ N△(x2n, F1x2n, kt) +
ϵ

22n
,

x2n+2 ∈ X is such that x2n+2 ∈ F2x2n+1 and

M(x2n+1, x2n+2, kt) ≥ M▽(x2n+1, F2x2n+1, kt) − ϵ

22n+1
,

N(x2n+1, x2n+2, kt) ≤ N△(x2n+1, F2x2n+1, kt) +
ϵ

22n+1
,

x2n+3 ∈ X is such that x2n+3 ∈ F3x2n+2 and

M(x2n+2, x2n+3, kt) ≥ M▽(x2n+2, F3x2n+2, kt) − ϵ

22n+2
,

N(x2n+2, x2n+3, kt) ≤ N△(x2n+2, F3x2n+2, kt) +
ϵ

22n+2
,

Now we show that {xn} is a Cauchy sequence.
By (3.1), for all t > 0 and α = 1 − q with q ∈ (0, 1), we have

M(x2n+1, x2n+2, kt)

≥ M▽(x2n+1, F2x2n+1, kt) − ϵ

22n+1

≥ M▽(F1x2n, F2x2n+1, kt) − ϵ

22n+1

≥ min{M(x2n, x2n+1, t),M▽(x2n, F1x2n, t),M▽(x2n+1, F2x2n+1, t),

M▽(x2n, F2x2n+1, (2 − α)t), M▽(x2n+1, F1x2n, t),

M▽(x2n, F3x2n+1, (2 − α)t), M▽(x2n+1, F3x2n+1, t)} −
ϵ

22n+1

≥ min{M(x2n, x2n+1, t),M(x2n, x2n+1, t),M(x2n+1, x2n+2, t),

M(x2n, x2n+2, (1 + q)t),M(x2n+1, x2n+1, t),

M(x2n, x2n+2, (1 + q)t),M(x2n+1, x2n+2, t)} −
ϵ

22n+1

≥ min{M(x2n, x2n+1, t),M(x2n, x2n+1, t),M(x2n+1, x2n+2, t),

M(x2n, x2n+1, t),M(x2n+1, x2n+2, qt), 1,M(x2n, x2n+1, t),

M(x2n+1, x2n+2, qt),M(x2n+1, x2n+2, t)} −
ϵ

22n+1

≥ min{M(x2n, x2n+1, t),M(x2n+1, x2n+2, t), M(x2n+1, x2n+2, qt)}

− ϵ

22n+1

(3.2)
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and
N(x2n+1, x2n+2, kt)

≤ N△(x2n+1, F2x2n+1, kt) +
ϵ

22n+1

≤ N△(F1x2n, F2x2n+1, kt) +
ϵ

22n+1

≤ max{N(x2n, x2n+1, t), N△(x2n, F1x2n, t), N△(x2n+1, F2x2n+1, t),

N△(x2n, F2x2n+1, (2 − α)t), N△(x2n+1, F1x2n, t),

N△(x2n, F3x2n+1, (2 − α)t), N△(x2n+1, F3x2n+1, t)} +
ϵ

22n+1

≤ max{N(x2n, x2n+1, t), N(x2n, x2n+1, t), N(x2n+1, x2n+2, t),

N(x2n, x2n+2, (1 + q)t), N(x2n+1, x2n+1, t),

N(x2n, x2n+2, (1 + q)t), N(x2n+1, x2n+2, t)} +
ϵ

22n+1

≤ max{N(x2n, x2n+1, t), N(x2n, x2n+1, t), N(x2n+1, x2n+2, t),

N(x2n, x2n+1, t), N(x2n+1, x2n+2, qt), 0, N(x2n, x2n+1, t),

N(x2n+1, x2n+2, qt), N(x2n+1, x2n+2, t)} +
ϵ

22n+1

≤ max{N(x2n, x2n+1, t), N(x2n+1, x2n+2, t), N(x2n+1, x2n+2, qt)}

+
ϵ

22n+1

(3.3)

Since the t-norm ∗ and t-conorm ⋄ are continuous, M(x, y, .) is left contin-
uous and N(x, y, .) is right continuous, letting q → 1 in (3.2) and (3.3), we
have

(3.4) M(x2n+1, x2n+2, kt)

≥ min{M(x2n, x2n+1, t),M(x2n+1, x2n+2, t)} −
ϵ

22n+1

and

(3.5) N(x2n+1, x2n+2, kt)

≤ max{N(x2n, x2n+1, t), N(x2n+1, x2n+2, t)} +
ϵ

22n+1

Similarly, we also have

(3.6) M(x2n+2, x2n+3, kt)

≥ min{M(x2n+1, x2n+2, t),M(x2n+2, x2n+3, t)} −
ϵ

22n+2

and

(3.7) N(x2n+2, x2n+3, kt)

≤ max{N(x2n+1, x2n+2, t), N(x2n+2, x2n+3, t)} +
ϵ

22n+2
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Thus from (3.4), (3.5), (3.6) and (3.7), it follows that

M(xn+1, xn+2, kt) ≥ min{M(xn, xn+1, t),M(xn+1, xn+2, t)} −
ϵ

2n+1

and

N(xn+1, xn+2, kt) ≤ max{N(xn, xn+1, t), N(xn+1, xn+2, t)} +
ϵ

2n+1
.

For n = 1, 2, . . ., and so, for positive integers n, p

M(xn+1, xn+2, kt) ≥ min{M(xn, xn+1, t), M(xn+1, xn+2, t/kp)} − ϵ

2n+1

and

N(xn+1, xn+2, kt) ≤ max{N(xn, xn+1, t), N(xn+1, xn+2, t/kp)} +
ϵ

2n+1
.

Thus, since limp→∞ M(xn+1, xn+2, t/kp) = 0 and limp→∞ N(xn+1, xn+2, t/kp) =
1, we have

M(xn+1, xn+2, kt) ≥ M(xn, xn+1, t) −
ϵ

2n+1

and

N(xn+1, xn+2, kt) ≤ N(xn, xn+1, t) +
ϵ

2n+1
.

Since ϵ is arbitrary, taking ϵ → 0, we have

M(xn+1, xn+2, kt) ≥ M(xn, xn+1, t)

and

N(xn+1, xn+2, kt) ≤ N(xn, xn+1, t).

By Lemma 11, {xn} is a Cauchy sequence in X. Since X is complete, {xn}
converges to a point z ∈ X. By (3.1) with α = 1, we have

M▽(x2n+2,F1z, kt)

≥ M▽(F1z, F2x2n+1, kt)

≥ min{M(z, x2n+1, t),M▽(z, F1z, t),M▽(x2n+1, F2x2n+1, t),

M▽(z, F2x2n+1, t), M▽(x2n+1, F1z, t),

M▽(z, F3x2n+1, t), M▽(x2n+1, F3x2n+1, t)}

≥ min{M(z, x2n+1, t),M▽(z, F1z, t),M(x2n+1, x2n+2, t),

M(z, x2n+2, t),M▽(x2n+1, F1z, t),

M(z, x2n+2, t),M(x2n+1, x2n+2, t)}
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and

N△(x2n+2,F1z, kt)

≤ N△(F1z, F2x2n+1, kt)

≤ max{N(z, x2n+1, t), N△(z, F1z, t), N△(x2n+1, F2x2n+1, t),

N△(z, F2x2n+1, t), N△(x2n+1, F1z, t),

N△(z, F3x2n+1, t), N△(x2n+1, F3x2n+1, t)}

≤ max{N(z, x2n+1, t), N△(z, F1z, t), N(x2n+1, x2n+2, t),

N(z, x2n+2, t), N△(x2n+1, F1z, t),

N(z, x2n+2, t), N(x2n+1, x2n+2, t)}

Letting n → ∞, we have

M▽(z, F1z, kt) ≥ min{M(z, z, t),M▽(z, F1z, t),M(z, z, t),M(z, z, t),

M▽(z, F1z, t),M(z, z, t),M(z, z, t)}

and

N△(z, F1z, kt) ≤ max{N(z, z, t), N△(z, F1z, t), N(z, z, t), N(z, z, t),

N△(z, F1z, t), N(z, z, t), N(z, z, t)}

Then we have

M▽(z, F1z, kt) ≥ M▽(z, F1z, t)

and

N△(z, F1z, kt) ≤ N△(z, F1z, t).

Therefore by Lemma 12, we have z ∈ F1z.
Now we prove that z ∈ F2z.
By (3.1) with α = 1, we have

M▽(z,F2x2n+1, kt)

≥ M▽(F1z, F2x2n+1, kt)

≥ min{M(z, x2n+1, t),M▽(z, F1z, t),M▽(x2n+1, F2x2n+1, t),

M▽(z, F2x2n+1, t), M▽(x2n+1, F1z, t),M▽(z, F3x2n+1, t),

M▽(x2n+1, F3x2n+1, t)}

≥ min{M(z, x2n+1, t),M(z, z, t), M▽(x2n+1, F2x2n+1, t),

M▽(z, F2x2n+1, t), M(x2n+1, z, t),M(z, x2n+2, t),

M(x2n+1, x2n+2, t)}
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and

N△(z,F2x2n+1, kt)

≤ N△(F1z, F2x2n+1, kt)

≤ max{N(z, x2n+1, t), N△(z, F1z, t), N△(x2n+1, F2x2n+1, t),

N△(z, F2x2n+1, t), N△(x2n+1, F1z, t), N△(z, F3x2n+1, t),

N△(x2n+1, F3x2n+1, t)}

≤ max{N(z, x2n+1, t), N(z, z, t), N△(x2n+1, F2x2n+1, t),

N△(z, F2x2n+1, t), N(x2n+1, z, t), N(z, x2n+2, t),

N(x2n+1, x2n+2, t)}

Letting n → ∞, we obtain

M▽(z, F2z, kt) ≥ min{M(z, z, t),M(z, z, t),M▽(z, F2z, t),M▽(z, F2z, t),

M(z, z, t),M(z, z, t),M(z, z, t)}

and

N△(z, F2z, kt) ≤ max{N(z, z, t), N(z, z, t), N△(z, F2z, t), N△(z, F2z, t),

N(z, z, t), N(z, z, t), N(z, z, t)}

Then we have
M▽(z, F2z, kt) ≥ M▽(z, F2z, t)

and
N△(z, F2z, kt) ≤ N△(z, F2z, t).

Therefore by Lemma 12, we have z ∈ F2z.
Similarly we can prove that z ∈ F3z. This completes the proof of the

Theorem. ¤
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