TIETZE EXTENSION THEOREM FOR ORDERED FUZZY PRE-EXTREMALLY DISCONNECTED SPACES

M. K. UMA, E. ROJA AND G. BALASUBRAMANIAN

ABSTRACT. In this paper, a new class of fuzzy topological spaces called ordered fuzzy pre-extremally disconnected spaces is introduced. Tietze extension theorem for ordered fuzzy pre-extremally disconnected spaces has been discussed as in [9] besides proving several other propositions and lemmas.

1. Intorduction and Preliminaries

The fuzzy concept has invaded almost all branches of Mathematics since the introduction of the concept by Zadeh [10]. Fuzzy sets have applications in many fields such as information [7] and control [8]. The theory of fuzzy topological spaces was introduced and developed by Chang [5] and since then various notions in classical topology have been extended to fuzzy topological space [2,3]. A new class of fuzzy topological spaces called ordered fuzzy pre-extremally disconnected spaces is introduced in this paper by using the concepts of fuzzy topology [6]. Some interesting properties and characterizations are studied. Tietze extension theorem for ordered fuzzy pre-extremally disconnected spaces has been discussed as in [9] besides proving several other propositions and lemmas.

Definition 1. Let (X, T) be a fuzzy topological space and let λ be any fuzzy set in X. λ is called *fuzzy pre-open* [4] if $\lambda \leq \text{int cl } \lambda$. The complement of fuzzy pre-open set is *fuzzy pre-closed* set.

Definition 2 ([6]). A fuzzy set λ in (X,T) is called *increasing* (resp. *decreasing*) if $\lambda(x) \leq \lambda(y)$ (resp. $\lambda(x) \geq \lambda(y)$) whenever $x \leq y$ in (X,T) and $x, y \in X$.

Definition 3 ([6]). An ordered set on which there is given a fuzzy topology is called an *ordered fuzzy topological space*.

©2008 The Busan Gyeongnam Mathematical Society

213

Received March 15, 2007; Revised February 20, 2008; Accepted March 15, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 54A40,\ 03E72.$

Key words and phrases. Ordered fuzzy pre-extremally disconnected spaces, ordered fuzzy pre-continuous functions, lower (resp. upper) fuzzy pre-continuous functions.

2. Ordered fuzzy pre-extremally disconnected spaces

In this section, the concept of ordered fuzzy pre-extremally disconnected space is introduced. Characterizations and properties are studied.

Notation. $I^0(\lambda)$ denotes increasing fuzzy interior of λ . $I(\lambda)$ denotes increasing fuzzy closure of λ .

Definition 4. Let (X, T, \leq) be an ordered fuzzy topological space and let λ be any fuzzy set in (X, T, \leq) , λ is called *increasing fuzzy pre-open* if $\lambda \leq I^{o}(I(\lambda))$. The complement of increasing fuzzy pre open set is called *decreasing fuzzy pre-closed* set.

Definition 5. Let λ be any fuzzy set in the ordered fuzzy topological space (X, T, \leq) . Then we define

 $I^{\rm fp}(\lambda) =$ increasing fuzzy pre-closure of λ

 $= \wedge \{\mu/\mu \text{ is a fuzzy pre-closed increasing set and } \mu \geq \lambda \},\$

 $D^{fp}(\lambda) = decreasing fuzzy pre-closure of \lambda$

 $= \wedge \{\mu/\mu \text{ is a fuzzy pre-closed decreasing set and } \mu \geq \lambda \},\$

 $I^{0 \text{fp}}(\lambda) = \text{increasing fuzzy pre-interior of } \lambda$

 $= \vee \{\mu/\mu \text{ is a fuzzy pre-open increasing set and } \mu \leq \lambda \},\$

 $D^{0 \text{fp}}(\lambda) = \text{decreasing fuzzy pre-interior of } \lambda$

 $= \vee \{\mu/\mu \text{ is a fuzzy pre-open decreasing set and } \mu \leq \lambda \}.$

Clearly, $I^{fp}(\lambda)$ (resp. $D^{fp}(\lambda)$) is the smallest fuzzy pre-closed increasing (resp. decreasing) set containing λ and $I^{0fp}(\lambda)$ (resp. $D^{0fp}(\lambda)$) is the largest fuzzy pre-open increasing (resp. decreasing) set contained in λ .

Proposition 1. For any fuzzy set λ of an ordered fuzzy topological space (X,T,\leq) , the following hold.

- (a) $1 I^{fp}(\lambda) = D^{0fp}(1 \lambda).$
- (b) $1 D^{\text{fp}}(\lambda) = I^{0\text{fp}}(1 \lambda).$
- (c) $1 I^{0 \operatorname{fp}}(\lambda) = D^{\operatorname{fp}}(1 \lambda).$
- (d) $1 D^{0 \operatorname{fp}}(\lambda) = I^{\operatorname{fp}}(1 \lambda).$

Proof. We shall prove (a) only, (b), (c) and (d) can be proved in a similar manner.

(a) Since $I^{fp}(\lambda)$ is a fuzzy pre-closed increasing set containing λ , $1 - I^{fp}(\lambda)$ is a fuzzy pre-open decreasing set such that $1 - I^{fp}(\lambda) \leq 1 - \lambda$. Let μ be another fuzzy pre-open decreasing set such that $\mu \leq 1 - \lambda$. Then $1 - \mu$ is a fuzzy pre-closed increasing set such that $1 - \mu \geq \lambda$. It follows that $I^{fp}(\lambda) \leq 1 - \mu$. That is, $\mu \leq 1 - I^{fp}(\lambda)$. Thus, $1 - I^{fp}(\lambda)$ is the largest fuzzy pre-open decreasing set such that $1 - I^{fp}(\lambda) = 1 - \lambda$. That is, $1 - I^{fp}(\lambda) = D^{0fp}(1 - \lambda)$. **Definition 6.** Let (X, T, \leq) be an ordered fuzzy topological space. Let λ be any fuzzy pre-open increasing (resp. decreasing) set in (X, T, \leq) . If $I^{fp}(\lambda)$ (resp. $D^{fp}(\lambda)$) is fuzzy pre-open increasing (resp. decreasing) in (X, T, \leq) , then (X, T, \leq) is said to be *upper* (resp. *lower*) fuzzy pre-extremally disconnected. A fuzzy topological space (X, T, \leq) is said to be ordered fuzzy pre-extremally disconnected.

Proposition 2. For an ordered fuzzy topological space (X, T, \leq) , the following are equivalent.

- (a) (X, T, \leq) is upper fuzzy pre-extremally disconnected.
- (b) For each fuzzy pre-closed decreasing set λ, D^{0fp}(λ) is fuzzy pre-closed decreasing.
- (c) For each fuzzy pre-open increasing set λ , we have $I^{fp}(\lambda) + D^{fp}(1 I^{fp}(\lambda)) = 1$.
- (d) For each pair of fuzzy pre-open increasing set λ , pre-open decreasing set μ in (X, T, \leq) with $I^{fp}(\lambda) + \mu = 1$, we have $I^{fp}(\lambda) + D^{fp}(\mu) = 1$.

Proof. (a) \Rightarrow (b). Let λ be any fuzzy pre-closed decreasing set. We claim $D^{0fp}(\lambda)$ is a fuzzy pre-closed decreasing set. Now, $1 - \lambda$ is fuzzy pre-open increasing and so by assumption (a), $I^{fp}(1-\lambda)$ is fuzzy pre-open increasing. That is, $D^{0fp}(\lambda)$ is fuzzy pre-closed decreasing. (b) \Rightarrow (c). Let λ be any fuzzy pre-open increasing set. Then,

(1)
$$1 - \mathbf{I}^{\mathrm{fp}}(\lambda) = \mathbf{D}^{0\mathrm{fp}}(1-\lambda).$$

Consider $I^{fp}(\lambda) + D^{fp}(1 - I^{fp}(\lambda)) = I^{fp}(\lambda) + D^{fp}(D^{0fp}(1 - \lambda))$. As λ is any fuzzy pre-open increasing, $1 - \lambda$ is fuzzy pre-closed decreasing and by assumption (b), $D^{0fp}(1 - \lambda)$ is fuzzy pre-closed decreasing. Therefore, $D^{fp}(D^{0fp}(1 - \lambda)) = D^{0fp}(1 - \lambda)$. Now,

$$\begin{split} \mathrm{I}^{\mathrm{fp}}(\lambda) + \mathrm{D}^{\mathrm{fp}}(\mathrm{D}^{\mathrm{0}\mathrm{fp}}(1-\lambda)) &= \mathrm{I}^{\mathrm{fp}}(\lambda) + \mathrm{D}^{\mathrm{0}\mathrm{fp}}(1-\lambda) \\ &= \mathrm{I}^{\mathrm{fp}}(\lambda) + 1 - \mathrm{I}^{\mathrm{fp}}(\lambda) \\ &= 1. \end{split}$$

That is, $I^{fp}(\lambda) + D^{fp}(1 - I^{fp}(\lambda)) = 1$.

(c) \Rightarrow (d). Let λ be any fuzzy pre-open increasing set and μ be any fuzzy pre-open decreasing set such that

(2)
$$I^{\rm fp}(\lambda) + \mu = 1$$

By assumption (c),

(3)
$$\mathbf{I}^{\mathrm{fp}}(\lambda) + \mathbf{D}^{\mathrm{fp}}(1 - \mathbf{I}^{\mathrm{fp}}(\lambda)) = 1 = \mathbf{I}^{\mathrm{fp}}(\lambda) + \mu.$$

That is, $\mu = D^{fp}(1 - I^{fp}(\lambda))$. Since $\mu = 1 - I^{fp}(\lambda)$,

(4)
$$D^{fp}(\mu) = D^{fp}(1 - I^{fp}(\lambda)).$$

From (3) and (4) we have $I^{fp}(\lambda) + D^{fp}(\mu) = 1$.

(d) \Rightarrow (a). Let λ be any fuzzy pre-open increasing set. Put $\mu = 1 - I^{\text{fp}}(\lambda)$. Clearly, μ is fuzzy pre-open decreasing and from the construction of μ it follows that $I^{\text{fp}}(\lambda) + \mu = 1$. By assumption (d), we have $I^{\text{fp}}(\lambda) + D^{\text{fp}}(\mu) = 1$ and so $I^{\text{fp}}(\lambda) = 1 - D^{\text{fp}}(\mu)$ is fuzzy pre-open increasing. Therefore (X, T, \leq) is upper fuzzy pre-extremally disconnected.

Proposition 3. Let (X, T, \leq) be an ordered fuzzy topological space. Then (X, T, \leq) is an upper fuzzy pre-extremally disconnected space if and only if for fuzzy decreasing pre-open set λ and fuzzy decreasing pre-closed set μ such that $\lambda \leq \mu$, we have $D^{\text{fp}}(\lambda) \leq D^{\text{Ofp}}(\mu)$.

Proof. Suppose (X, T, \leq) is an upper fuzzy pre-extremally disconnected space. Let λ be any fuzzy pre-open decreasing set, μ be any fuzzy pre-closed decreasing set such that $\lambda \leq \mu$. Then by (b) of Proposition 2, $D^{0fp}(\mu)$ is fuzzy preclosed decreasing. Also, since λ is fuzzy pre-open decreasing and $\lambda \leq \mu$, it follows that $\lambda \leq D^{0fp}(\mu)$. Again, since $D^{0fp}(\mu)$ is fuzzy pre-closed decreasing, it follows that $D(\lambda) \leq D^{0fp}(\mu)$. To prove the converse, let μ be any fuzzy preclosed decreasing set. By Definition 5, $D^{0fp}(\mu)$ is fuzzy pre-open decreasing and it is also clear that $D^{0fp}(\mu) \leq \mu$. Therefore by assumption, it follows that $D^{fp}(D^{0fp}(\mu)) \leq D^{0fp}(\mu)$. This implies that $D^{0fp}(\mu)$ is fuzzy pre-closed decreasing. Hence, by (b) of Proposition 2, it follows that (X, T, \leq) is upper fuzzy pre-extremally disconnected. □

Notation. An ordered fuzzy set which is both fuzzy decreasing (resp. increasing) pre-open and pre-closed is called fuzzy decreasing (resp. increasing) pre clopen set.

Remark 1. Let (X, T, \leq) be an upper fuzzy pre-extremally disconnected space. Let $\{\lambda_i, 1 - \mu_i \mid i \in N\}$ be a collection such that λ_i 's are fuzzy pre-open decreasing sets, μ_i 's are fuzzy pre-closed decreasing sets and let $\lambda, 1 - \mu$ be fuzzy pre-open decreasing and pre-open increasing sets respectively. If $\lambda_i \leq \lambda \leq \mu_j$ and $\lambda_i \leq \mu \leq \mu_j$ for all $i, j \in N$, then there exists a fuzzy pre-clopen decreasing set γ such that $D^{\text{fp}}(\lambda_i) \leq \gamma \leq D^{0\text{fp}}(\mu_j)$ for all $i, j \in N$. By Proposition 3, $D^{\text{fp}}(\lambda_i) \leq D^{\text{fp}}(\lambda) \wedge D^{0\text{fp}}(\mu) \leq D^{0\text{fp}}(\mu_j)$ ($i, j \in N$). Put $\gamma = D^{\text{fp}}(\lambda) \wedge D^{0\text{fp}}(\mu)$. Now, γ satisfies our required condition.

Proposition 4. Let (X,T,\leq) be an upper fuzzy pre-extremally disconnected space. Let $\{\lambda_q\}_{q\in Q}$ and $\{\mu_q\}_{q\in Q}$ be monotone increasing collections of fuzzy pre-open decreasing sets and fuzzy pre-closed decreasing sets of (X,T,\leq) respectively and suppose that $\lambda_{q_1} \leq \mu_{q_2}$ whenever $q_1 < q_2$ (Q is the set of rational numbers). Then there exists a monotone increasing collection $\{\gamma_q\}_{q\in Q}$ of fuzzy pre-clopen decreasing sets of (X,T,\leq) such that $D^{fp}(\lambda_{q_1}) \leq \gamma_{q_2}$ and $\gamma_{q_1} \leq D^{0fp}(\mu_{q_2})$ whenever $q_1 < q_2$.

216

 $n\} \subset I^X$ such that

$$(S_n) \qquad \begin{cases} \mathbf{D}^{\mathrm{fp}}(\lambda_q) \leq \gamma_{q_i} & \text{if } q < q_i, \\ \gamma_{q_i} \leq \mathbf{D}^{\mathrm{0fp}}(\mu_q) & \text{if } q_i < q, \end{cases}$$

for all i < n.

By Proposition 3, the countable collections $\{D^{fp}(\lambda_q)\}\$ and $\{D^{0fp}(\mu_q)\}\$ satisfying $D^{fp}(\lambda_{q_1}) \leq D^{0fp}(\mu_{q_2})$ if $q_1 < q_2$. By Remark 1, there exists fuzzy pre-clopen decreasing set δ_1 such that $D^{fp}(\lambda_{q_1}) \leq \delta_1 \leq D^{0fp}(\mu_{q_2})$. Setting $\gamma_{q_1} = \delta_1$ we get (S_2) . Assume that fuzzy sets γ_{q_i} are already defined for i < nand satisfy (S_n) . Define $\Sigma = \vee \{\gamma_{q_i} \mid i < n, q_i < q_n\} \vee \lambda_{q_n}$ and $\Phi = \wedge \{\gamma_{q_j} \mid j < \gamma_{q_j} \mid j < \gamma_{q_j}\} \vee \lambda_{q_n}$ $n, q_j > q_n \} \land \mu_{q_n}$. Then we have that $D^{\text{fp}}(\gamma_{q_i}) \leq D^{\text{fp}}(\Sigma) \leq D^{\text{ofp}}(\gamma_{q_i})$ and $D^{\text{fp}}(\gamma_{q_i}) \leq D^{0\text{fp}}(\Phi) \leq D^{0\text{fp}}(\gamma_{q_j})$ whenever $q_i < q_n < q_j$ (i, j < n) as well as $\lambda_q \leq \mathrm{D^{fp}}(\Sigma) \leq \mu_{q'}$ and $\lambda_q \leq \mathrm{D^{0fp}}(\Phi) \leq \mu_{q'}$ whenever $q < q_n < q'$. This shows that the countable collections $\{\gamma_{q_i} \mid i < n, q_i < q_n\} \cup \{\lambda_q \mid q < q_n\}$ and $\{\gamma_{q_i} \mid j < n, q_j > q_n\} \cup \{\mu_q \mid q > q_n\}$ together with Σ and Φ fulfil all conditions of Remark 7.3.1. Hence, there exists a fuzzy pre-clopen decreasing set δ_n such that $D^{\text{fp}}(\delta_n) \leq \mu_q$ if $q_n < q$, $\lambda_q \leq D^{0\text{fp}}(\delta_n)$ if $q < q_n$, $D^{\text{fp}}(\gamma_{q_i}) \leq D^{0\text{fp}}(\delta_n)$ if $q_i < q_n$, $D^{\text{fp}}(\delta_n) \leq D^{0\text{fp}}(\gamma_{q_j})$ if $q_n < q_j$, where $1 \leq i, j \leq n-1$. Now setting $\gamma_{q_n} = \delta_n$ we obtain the fuzzy sets $\gamma_{q_1}, \gamma_{q_2}, \ldots, \gamma_{q_n}$ that satisfy (S_{n+1}) . Therefore the collection $\{\gamma_{q_i} \mid i = 1, 2, ...\}$ has required property. This completes the proof.

Definition 7. Let (X, T, \leq) and (Y, S, \leq) be ordered fuzzy topological spaces. A mapping $f: (X, T, \leq) \to (Y, S, \leq)$ is called an *increasing* (resp. *decreasing*) fuzzy pre-continuous if $f^{-1}(\lambda)$ is fuzzy pre-open increasing (resp. decreasing) set of (X, T, \leq) for every fuzzy pre-open set λ of (Y, S, \leq) . If f is both increasing and decreasing fuzzy pre-continuous, then it is called ordered fuzzy pre-continuous.

Definition 8. Let (X, T, \leq) be an ordered fuzzy topological space. A function $f: X \to R(I)$ is called *lower* (resp. *upper*) fuzzy pre-continuous, if $f^{-1}(R_t)$ (resp. $f^{-1}(L_t)$) is an increasing or decreasing fuzzy pre-open set for each $t \in R$.

Lemma 1. Let (X,T,\leq) be an ordered fuzzy topological space, let $\lambda \in I^X$, and let $f: X \to R(I)$ be such that

$$f(x)(t) = \begin{cases} 1 & \text{if } t < 0, \\ \lambda(x) & \text{if } 0 \le t \le 1, \\ 0 & \text{if } t > 1, \end{cases}$$

for all $x \in X$. Then f is lower (resp. upper) fuzzy pre-continuous iff λ is fuzzy pre-open (resp. pre-closed) increasing or decreasing set.

Definition 9. The characteristic function of $\lambda \in I^X$ is the map $\chi_{\lambda} : X \to [0,1](I)$ defined by $\chi_{\lambda}(x) = (\lambda(x)), x \in X$.

Proposition 5. Let (X, T, \leq) be an ordered fuzzy topological space, and let $\lambda \in I^X$. Then χ_{λ} is lower (resp. upper) fuzzy pre-continuous iff λ is fuzzy pre-open (resp. pre-closed) increasing or decreasing set.

Proof. The proof follows from Lemma 1.

Proposition 6. Let (X, T, \leq) be an ordered fuzzy topological space. Then the following statements are equivalent.

- (a) (X, T, \leq) is upper fuzzy pre-extremally disconnected.
- (b) If $g, h: X \to R(I)$, g is lower fuzzy pre-continuous, h is upper fuzzy pre-continuous and $g \leq h$, then there exists an increasing fuzzy pre-continuous function $f: (X, T, \leq) \to R(I)$ such that $g \leq f \leq h$.
- (c) If 1λ is fuzzy pre-open increasing and μ is fuzzy pre-open decreasing such that $\mu \leq \lambda$, then there exists an increasing fuzzy pre-continuous function $f: (X, T, \leq) \rightarrow [0, 1](I)$ such that $\mu \leq (1 - L_1)f \leq R_0 f \leq \lambda$.

Proof. (a) \Rightarrow (b). Define $H_r = L_r h$ and $G_r = (1-R_r)g$, $r \in Q$. Thus we have two monotone increasing families of respectively fuzzy pre-open decreasing and fuzzy pre-closed decreasing sets of (X, T, \leq) . Moreover $H_r \leq G_s$ if r < s. By Proposition 4, there exists a monotone increasing family $\{F_r\}_{r\in Q}$ of fuzzy preclopen decreasing sets of (X, T, \leq) such that $D^{\text{fp}}(H_r) \leq F_s$ and $F_r \leq D^{0\text{fp}}(G_s)$ whenever r < s. Letting $V_t = \wedge_{r < t} (1 - F_r)$ for all $t \in R$, we define a monotone decreasing family $\{V_t \mid t \in R\} \subset I^X$. Moreover we have $I^{\text{fp}}(V_t) \leq I^{0\text{fp}}(V_s)$, whenever s < t. We have

$$\forall_{t \in R} V_t = \forall_{t \in R} \land_{r < t} (1 - F_r)$$

$$\geq \forall_{t \in R} \land_{r < t} (1 - G_r)$$

$$= \forall_{t \in R} \land_{r < t} g^{-1}(R_r)$$

$$= \forall_{t \in R} g^{-1}(R_t)$$

$$= g^{-1}(\forall_{t \in R}(R_t)) = 1.$$

Similarly, $\wedge_{t \in R} V_t = 0.$

We now define a function $f: (X, T, \leq) \to R(I)$ satisfying the required properties. Let $f(x)(t) = V_t(x)$ for all $x \in X$ and $t \in R$. By the above discussion, it follows that f is well defined. To prove f is fuzzy increasing pre-continuous, we observe that

$$\bigvee_{s>t} V_s = \bigvee_{s>t} \mathbf{I}^{\mathrm{Ofp}}(V_s) \quad \text{and} \quad \wedge_{s$$

Then $f^{-1}(R_t) = \bigvee_{s>t} V_s = \mathrm{I}^{\mathrm{0fp}}(V_s)$ is fuzzy pre-open increasing. Now,

$$f^{-1}(1-L_t) = \bigwedge_{s < t} V_s = \bigwedge_{s < t} \mathbf{I}^{\mathrm{fp}}(V_s)$$

is fuzzy pre-closed increasing, so that f is fuzzy increasing pre-continuous. To conclude the proof it remains to show that $g \leq f \leq h$, that is $g^{-1}(1-L_t) \leq f^{-1}(1-L_t) \leq h^{-1}(1-L_t)$ and $g^{-1}(R_t) \leq f^{-1}(R_t) \leq h^{-1}(R_t)$ for each $t \in R$.

We have

$$g^{-1}(1 - L_t) = \bigwedge_{s < t} g^{-1}(1 - L_s)$$
$$= \bigwedge_{s < t} \bigwedge_{r < s} g^{-1}(R_r)$$
$$= \bigwedge_{s < t} \bigwedge_{r < s} (1 - G_r)$$
$$\leq \bigwedge_{s < t} \bigwedge_{r < s} (1 - F_r)$$
$$= \bigwedge_{s < t} V_s = f^{-1}(1 - L_t)$$

and

$$f^{-1}(1 - L_t) = \bigwedge_{s < t} V_s$$

= $\bigwedge_{s < t} \bigwedge_{r < s} (1 - F_r)$
 $\leq \bigwedge_{s < t} \bigwedge_{r < s} (1 - H_r)$
= $\bigwedge_{s < t} \bigwedge_{r < s} h^{-1}(1 - L_r)$
= $\bigwedge_{s < t} h^{-1}(1 - L_s)$
= $h^{-1}(1 - L_t).$

Similarly, we obtain

$$g^{-1}(R_t) = \bigvee_{s>t} g^{-1}(R_s)$$
$$= \bigvee_{s>t} \bigvee_{r>s} g^{-1}(R_r)$$
$$= \bigvee_{s>t} \bigvee_{r>s} (1 - G_r)$$
$$\leq \bigvee_{s>t} \bigvee_{r
$$= \bigvee_{s>t} V_s = f^{-1}(R_t)$$$$

and

$$f^{-1}(R_t) = \bigvee_{s>t} V_s$$

= $\bigvee_{s>t} \bigvee_{r
 $\leq \bigvee_{s>t} \bigvee_{r>s} (1 - H_r)$
= $\bigvee_{s>t} \bigvee_{r>s} h^{-1}(1 - L_r)$
= $h^{-1}(R_s) = h^{-1}(R_t).$$

Thus, (b) is proved.

(b) \Rightarrow (c). Suppose $1 - \lambda$ is a fuzzy pre-open increasing set and μ is a fuzzy pre-open decreasing set, $\mu \leq \lambda$. Then $\chi_{\mu} \leq \chi_{\lambda}$ and $\chi_{\mu}, \chi_{\lambda}$ are lower and upper fuzzy pre-continuous functions respectively. Hence by (b), there exists an increasing fuzzy pre-continuous function $f: (X, T, \leq) \rightarrow R(I)$ such that $\chi_{\mu} \leq f \leq \chi_{\lambda}$. Clearly, $f(x) \in [0, 1](I)$ for all $x \in X$ and $\mu = (1 - L_1)\chi_{\mu} \leq (1 - L_1)f \leq R_0 f \leq R_0 \chi_{\lambda} = \lambda$. (c) \Rightarrow (a). This follows from Proposition 3 and the fact that $(1 - L_1)f$ and

(c) \Rightarrow (a). This follows from Proposition 3 and the fact that $(1-L_1)f$ and R_0f are fuzzy pre-closed decreasing and pre-open decreasing sets respectively. Hence, the result.

Note 1. The Propositions 2 to 5, and Remark 1 can be discussed for other cases also.

3. Tietze extension theorem for ordered fuzzy pre-extremally disconnected spaces

In this section, Tietze extension theorem for ordered fuzzy pre-extremally disconnected spaces is studied.

Proposition 7 (Tietze Extension Theorem). Let (X, T, \leq) be an upper fuzzy pre-extremally disconnected space and let $A \subset X$ be such that χ_A is fuzzy preopen increasing set in (X, T, \leq) . Let $f: (A, T/A) \to [0, 1](I)[6]$ be an increasing fuzzy pre-continuous function. Then f has an increasing fuzzy pre-continuous extension over (X, T, \leq) .

Proof. Let $g, h: X \to [0,1](I)$ be such that g = f = h on A, and

$$g(x) = \langle 0 \rangle, \ h(x) = \langle 1 \rangle \text{ if } x \notin A.$$

We now have

$$R_t g = \begin{cases} \mu_t \wedge \chi_A & \text{if } t \ge 0, \\ 1 & \text{if } t < 0, \end{cases}$$

where μ_t is fuzzy pre-open increasing such that

$$\mu_t/A = R_t f$$

and

$$L_t h = \begin{cases} \lambda_t \wedge \chi_A & \text{if } t \le 1, \\ 1 & \text{if } t > 1, \end{cases}$$

where λ_t is fuzzy pre-open increasing such that

$$\lambda_t / A = L_t f.$$

Thus, g is lower fuzzy pre-continuous, h is upper fuzzy pre-continuous and $g \leq h$. By Proposition 6, there is an increasing fuzzy pre-continuous function $F: (X, T, \leq) \to [0, 1](I)$ such that $g \leq F \leq h$; hence $F \equiv f$ on A.

Note 2. The above proposition can be discussed for other cases also.

References

- BALASUBRAMANIAN G., Fuzzy disconnectedness and its stronger forms, Indian J. Pure Appl. Math. 24 (1993), 27–30.
- BALASUBRAMANIAN G., On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces, KYBERNETIKA 33 (1997), 271–277.
- [3] BALASUBRAMANIAN G. and SUNDARAM P., On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997), 93–100.
- [4] BIN SHAHNA A. S., On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy Sets and Systems 44 (1991), 303–308.
- [5] CHANG C. L., Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [6] KATSARAS A. K., Ordered fuzzy topological spaces, J. Math. Anal. Appl. 84 (1981), 44–58.

220

- [7] SMETS P., The degree of belief in a fuzzy event, Information Sciences 25 (1981), 1–19.
- [8] SUGENO M., An introductory survey of fuzzy control, Information Sciences **36** (1985), 59–83.
- [9] TOMASZ KUBIAK, Extending continuous L-real functions, Math. Japonica 6 (1986), 875–887.
- [10] ZADEH L. A., Fuzzy sets, Information and Control 8 (1965), 338–353.

M. K. UMA, E. ROJA

Department of Mathematics, Sri Sarada College for Women, Salem – 636016, Tamilnadu.

G. BALASUBRAMANIAN

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, Tamilnadu