참고문헌
- Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, John Wiley & Sons, New York
- Abdi, H. (2003). Partial least squares(PLS) regression, In Lewis-Beck M., Bryman, A. and Futing, T. (eds.), Encyclopedia of Social Sciences Research Methods, Thousand Oaks (CA): Sage
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360 https://doi.org/10.1198/016214501753382273
- Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression tools, Technometrics, 35, 109-135 https://doi.org/10.2307/1269656
- Gauchi, J. P. and Chagnon, P. (2001). Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data, Chemometrics and Intelligent Laboratory Systems, 58, 171-193 https://doi.org/10.1016/S0169-7439(01)00158-7
- Geisser, S. (1974). A predictive approach to the random effect model, Biometrika, 61, 101-107 https://doi.org/10.1093/biomet/61.1.101
- Hoskuldsson, A. (2001). Variable and subset selection in PLS regression, Chemometrics and Intelligent Laboratory Systems, 55, 23-38 https://doi.org/10.1016/S0169-7439(00)00113-1
- Jolliffe, I. T., Trendafilov, N. T. and Uddin, M. (2003). A modified principal component technique based on the lasso, Journal of Computational and Graphical Statistics, 12, 531-547 https://doi.org/10.1198/1061860032148
- Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983). Optimization by simulated annealing, Science, 220, 671-680 https://doi.org/10.1126/science.220.4598.671
- Lazraq, A., Cleroux, R. and Gauchi, J. P. (2003). Selecting both latent and explanatory variables in the PLS1 regression model, Chemometrics and Intelligent Laboratory Systems, 66, 117-126 https://doi.org/10.1016/S0169-7439(03)00027-3
- Leardi, R. and Gonzealez, A. L. (1998). Genetic algorithms applied to feature selection in PLS regression: How and when to use them, Chemometrics and Intelligent Laboratory Systems, 41, 195-207 https://doi.org/10.1016/S0169-7439(98)00051-3
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machines, Journal of Chemical Physics, 21, 1087-1092 https://doi.org/10.1063/1.1699114
- Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society, Series B, 36, 111-147
- Tibshirani, R. (1996). Regression shirinkage and selection via the Lasso, Journal of the Royal Statistical Society, Series B, 58, 267-288
- Wold, H. (1975). Path models with latent variables: The NIPALS approach, In H.M. Blalock et al., Quantitative Sociology: International Perspectives on Mathematical and Statistical Model Building, pages 307-357, Academic Press, New York