Functional Identification and Expression of Indole-3-Pyruvate Decarboxylase from Paenibacillus polymyxa E681

  • Phi, Quyet-Tien (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Park, Yu-Mi (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Ryu, Choong-Min (Genome Research Center, KRIBB) ;
  • Park, Seung-Hwan (Genome Research Center, KRIBB) ;
  • Ghim, Sa-Youl (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
  • Published : 2008.07.31

Abstract

Indole-3-acetic acid (IAA) is produced commonly by plants and many bacteria, however, little is known about the genetic basis involving the key enzymes of IAA biosynthetic pathways from Bacillus spp. IAA intermediates from the Gram-positive spore-forming bacterium Paenibacillus polymyxa E681 were investigated, which showed the existence of only an indole-3-pyruvic acid (IPA) pathway for IAA biosynthesis from the bacterium. Four open reading frames (ORFs) encoding indole-3-pyruvate decarboxylase-like proteins and putative indole-3-pyruvate decarboxylase (IPDC), a key enzyme in the IPA synthetic pathway, were found on the genome sequence database of P. polymyxa and cloned in Escherichia coli DH5$\alpha$. One of the ORFs, PP2_01257, was assigned as probable indole-3-pyruvate decarboxylase. The ORF consisted of 1,743 nucleotides encoding 581 amino acids with a deduced molecular mass of 63,380 Da. Alignment studies of the deduced amino acid sequence of the ORF with known IPDC sequences revealed conservation of several amino acids in PP2_01257, essential for substrate and cofactor binding. Recombinant protein, gene product of the ORF PP2_01257 from P. polymyxa E681, was expressed in E. coli BL21 (DE3) as a glutathione S-transferase (GST)-fusion protein and purified to homogeneity using affinity chromatography. The molecular mass of the purified enzyme showed about 63 kDa, corresponding closely to the expected molecular mass of IPDC. The indole-3-pyruvate decarboxylase activity of the recombinant protein, detected by HPLC, using IPA substrate in the enzyme reaction confirmed the identity and functionality of the enzyme IPDC from the E681 strain.

Keywords

References

  1. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test; proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260 https://doi.org/10.1007/BF00873085
  2. Brandl, M. T. and S. E. Lindow. 1996. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl. Environ. Microbiol. 62: 4121-4128
  3. Brandl, M. T., E. M. Clark, and S. E. Lindow. 1996. Characterization of the indole-3-acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Can. J. Microbiol. 42: 586-592 https://doi.org/10.1139/m96-079
  4. Budi, S. W., D. V. Tuinen, C. Arnould, E. D. Gaudot, V. G. Pearson, and S. Gianinazzi. 2000. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15: 191-199 https://doi.org/10.1016/S0929-1393(00)00095-0
  5. Cheong, H., S.-Y. Park, C.-M. Ryu, J.-H. Kim, S.-H. Park, and C.-S. Park. 2005. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J. Microbiol. Biotechnol. 15: 1286-1298
  6. Costacurta, A., V. Keijers, and J. Vanderleyden. 1994. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet. 243: 463-472
  7. Chung, K.-R., T. Shilts, U. Erturk, L. W. Timmer, and P.-P. Ueng. 2003. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 226: 23-30 https://doi.org/10.1016/S0378-1097(03)00605-0
  8. Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796
  9. Helbig, J. 2001. Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J. Phytopathol. 149: 265-273 https://doi.org/10.1046/j.1439-0434.2001.00609.x
  10. Heulin, T., O. Berge, P. Mavingui, L. Gouzou, K. P. Hebbar, and J. Balandreau. 1994. Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur. J. Soil Biol. 30: 35-42
  11. Holl, F. B., C. P. Chanway, R. Turkington, and R. A. Radley. 1988. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Triifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem. 20: 19-24 https://doi.org/10.1016/0038-0717(88)90121-6
  12. Jeong, H.-Y., J.-H. Kim, Y.-K. Park, S.-B. Kim, C.-H. Kim, and S.-H. Park. 2006. Genome snapshot of Paenibacillus polymyxa ATCC 842T. J. Microbiol. Biotechnol. 16: 1650-1655
  13. Kajimura, Y. and M. Kaneda. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8: Taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 49: 129-135 https://doi.org/10.7164/antibiotics.49.129
  14. Koga, J., T. Adachi, and H. Hidaka. 1991. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol. Gen. Genet. 226: 10-16 https://doi.org/10.1007/BF00273581
  15. Koga, J., T. Adachi, and H. Hidaka. 1992. Purification and characterization of indolepyruvate decarboxylase, a novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J. Biol. Chem. 267: 15823-15828
  16. Kurusu, K., K. Ohba, T. Arai, and K. Fukushima. 1987. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot. 40: 1506-1514 https://doi.org/10.7164/antibiotics.40.1506
  17. Lebuhn, M., T. Heulin, and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325-334 https://doi.org/10.1111/j.1574-6941.1997.tb00384.x
  18. Mavingui, P. and T. Heulin. 1994. In vitro chitinase and antifungal activity of soil, rhizosphere and rhizoplane populations of Bacillus polymyxa. Soil Biol. Biochem. 26: 801-803 https://doi.org/10.1016/0038-0717(94)90277-1
  19. Nielsen, P. and J. Sorensen. 1997. Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol. 22: 183-192 https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
  20. Ona, O., J. Van-Impe, E. Prinsen, and J. Vanderleyden. 2005. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol. Lett. 246: 125-132 https://doi.org/10.1016/j.femsle.2005.03.048
  21. Park, S.-H., J.-F. Kim, C.-C. Kim, H. Jeong, S.-K. Choi, C.-G. Hur, T.-K. Oh, Y.-H. Moon, and C.-S. Park. 2002. Genome sequencing and analysis of Paenibacillus polymyxa E681, a plant-probiotic bacterium. 9th International Symposium in the Genetics of Industrial Microorganisms. S18:68
  22. Patten, C. L. and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220 https://doi.org/10.1139/m96-032
  23. Pichard, B., J. P. Larue, and D. Thouvenot. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett. 133: 215-218 https://doi.org/10.1111/j.1574-6968.1995.tb07887.x
  24. Prinsen, E., A. Costacurta, K. Michiels, J. Vanderleyden, and H. V. Onckelen. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: Evidence for a non-tryptophan dependent pathway. Mol. Plant-Microbe Interact. 6: 609-615 https://doi.org/10.1094/MPMI-6-609
  25. Ryu, C. M. and C. S. Park. 1997. Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681, pp. 209-211. In: Plant Growth-promoting Rhizobacteria: Present Status and Future Prospects. Proceedings of the 4th International Workshop on Plant Growth-promoting Rhizobacteria, Japan-OECD Joint Workshop, Sapporo
  26. Ryu, C.-M., J.-W. Kim, O.-H. Choi, S.-Y. Park, S.-H. Park, and C.-S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  27. Schutz, A., T. Sandalova, S. Ricagno, G. Hubner, S. Konig, and G. Schneider. 2003. Crystal structure of thiamin diphosphatedependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. Eur. J. Biochem. 270: 2312-2321 https://doi.org/10.1046/j.1432-1033.2003.03601.x
  28. Seul, K.-J., S.-H. Park, C.-M. Ryu, Y.-H. Lee, and S.-Y. Ghim. 2007. Proteome analysis of Paenibacillus polymyxa E681 affected by barley. J. Microbiol. Biotechnol. 17: 934-944
  29. Singh, H. P. and T. A. Singh. 1993. The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza 4: 37-43 https://doi.org/10.1007/BF00203249
  30. Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448 https://doi.org/10.1111/j.1574-6976.2007.00072.x
  31. Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
  32. Yagi, K., T. Chujo, H. Nojiri, T. Omori, M. Nishiyama, and H. Yamane. 2001. Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis in Azospirillum lipoferum. Biosci. Biotechnol. Biochem. 65: 1265-1269 https://doi.org/10.1271/bbb.65.1265
  33. Zimmer, W., B. Hundeshagen, and E. Niederau. 1994. Demonstration of the indolepyruvate decarboxylase gene homologue in different auxin-producing species of the Enterobacteriaceae. Can. J. Microbiol. 40: 1072-1076 https://doi.org/10.1139/m94-170
  34. Zimmer, W., M. Wesche, and L. Timmermans. 1998. Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7. Sequencing and functional analysis of the gene locus. Curr. Microbiol. 36: 327-333 https://doi.org/10.1007/s002849900317