Low Complexity MMSE with Successive Interference Cancellation for OFDM Systems over Time-selective Channels

시변 채널 환경에서 OFDM 시스템을 위한 복잡도가 감소된 MMSE-SIC 등화기법

  • 박지현 (연세대학교 전기전자공학과) ;
  • 황승훈 (동국대학교 전자공학과) ;
  • 황금찬 (연세대학교 전기전자공학과)
  • Published : 2008.07.30

Abstract

Orthogonal frequency division multiplexing (OFDM) is a attractive modulation scheme for high data rate transmission in frequency-selective channels. However, the time selectivity of wireless channel introduces intercarrier interference (ICI), and consequently degrades system performance. In this paper, we first propose a novel recursive algorithm for minimum mean squared error (MMSE) with successive interference cancellation (SIC). The proposed algorithm can significantly reduce the complexity of the MMSE-SIC scheme and achieve the same performance when optimal ordering is known. Also, the further reduced scheme of the proposed algorithm can be developed based on ICI properties, while preserving performance.

OFDM 방식은 주파수 선택적(frequency-selective) 채널 환경에서 고속 데이터 전송을 위한 효과적인 변조 기술이지만 시간 선택적(time-selective) 채널 환경에선 인접 채널간의 간섭(intercarrier interference) 현상으로 인해 시스템 성능이 저하되게 된다. 본 논문에선 먼저 MMSE(minimum mean squared error) 등화기와 직렬 간섭 제거방식(successive interference cancellation)이 결합된 MMSE-SIC 등화기법을 위한 새로운 recursive 알고리즘을 제안한다. 제안된 알고리즘은 최적의 검출 순서가 알려져 있을 경우 기존 MMSE-SIC 등화 방식의 복잡도를 크게 낮추면서도 동일한 성능을 나타낸다. 또한 ICI의 특성을 이용하여 어느 정도 성능을 유지하면서도 제안된 알고리즘의 복잡도를 보다 개선할 수 있다.

Keywords

References

  1. W. G. Jeon, K. H. Chang and Y. S. Cho, "An equalization technique for orthogonal frequency division multiplexing systems in time-variant multipath channels," IEEE Trans. Commun., Vol.47, pp.27-32, Jan. 1999 https://doi.org/10.1109/26.747810
  2. Y. S. CHoi, P. J. Voltz, and F. A. Cassara, "On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels," IEEE Trans. Commun., Vol.49, pp.1375-1387, Aug. 2001 https://doi.org/10.1109/26.939860
  3. P. Schniter, "Low complexity equalization of OFDM in doubly selective channels," IEEE Trans. Signal Processing, Vol.52, No.4, pp.1002-1011, Apr. 2004 https://doi.org/10.1109/TSP.2004.823503
  4. X. Cai and G. Giannakis, "Bounding performance and suppressing intercarrier interference in wireless mobile OFDM," IEEE Trans. Commun., Vol.51, pp.2047-2056, Dec. 2003 https://doi.org/10.1109/TCOMM.2003.820752
  5. B. Hassibi, "An efficient square-root algorithm for BLAST," in Proc. IEEE ICASSP, Vol.2, pp.11737-11740, June 2000
  6. H. Zhu, Z. Lei, and F. S. Chin, "An improved square-root algorithm for BLAST," IEEE Lett., Signal Processing, pp.772-775, Sept. 2004
  7. J. Benesty, Y. Huang, and J. Chen, "A fast recursive algorithm for optimum sequential signal detection in a BLAST system," IEEE Trans. Signal Processing, pp.1722-1730. July 2003
  8. Z. Luo, S. Liu, M. Zhao, and Y. Liu, "A novel optimal recursive MMSE-SIC detection algorithm for V-BLAST systems," in Proc. IEEE ICC., pp.3105-3110, June. 2006
  9. W. Jiang, Y. Asai, and S. Aikawa, "Very fast recursion based algorithm for BLAST signal detection in spatial multiplexing system," IEICE Trans. Commun., pp.1773-1779, July 2007
  10. 강승원, 김규현, 장경희, "MIMO-OFDM 수신 기의 성능 열화 분석 및 고속 이동환경에서의 성능 향상을 위한 저복잡도 HIC 간섭제거 기법," 한국통신학회논문지, 제32권 제2호, pp.95-112. Feb. 2007
  11. W. K. Wai, C. Y. Tsui, and R. S. Cheng, "A low complexity architecture of the V-BLAST system," in Proc. IEEE Communication and Networking Conf., pp.310-314. July 2000
  12. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Univ. Press, 1996