DOI QR코드

DOI QR Code

Cepstrum Analysis of Terrestrial Impact Crater Records

  • Chang, Heon-Young (Dept. of Astronomy and Atmospheric Sciences, Kyungpook National Univ.) ;
  • Han, Cheong-Ho (Dept. of Physic, Institute for Basic Science Research, Chungbuk National Univ.)
  • Published : 2008.06.15

Abstract

Study of terrestrial impact craters is important not only in the field of the solar system formation and evolution but also of the Galactic astronomy. The terrestrial impact cratering record recently has been examined, providing short- and intermediate-term periodicities, such as, ${\sim}26$ Myrs, ${\sim}37$ Myrs. The existence of such a periodicity has an implication in the Galactic dynamics, since the terrestrial impact cratering is usually interpreted as a result of the environmental variation during solar orbiting in the Galactic plane. The aim of this paper is to search for a long-term periodicity with a novel method since no attempt has been made so far in searching a long-term periodicity in this research field in spite of its great importance. We apply the cepstrum analysis method to the terrestrial impact cratering record for the first time. As a result of the analysis we have found noticeable peaks in the Fourier power spectrum appear ing at periods of ${\sim}300$ Myrs and ${\sim}100$ Myrs, which seem in a simple resonance with the revolution period of the Sun around the Galactic center. Finally we briefly discuss its implications and suggest theoretical study be pursued to explain such a long-term periodicity.

Keywords

References

  1. Alvarez,W. & Muller, R. A. 1984, Nature, 308, 718 https://doi.org/10.1038/308718a0
  2. Bae, Y.-H., Byun, Y.-I., Kang, Y.-W., Park, S.-Y., Oh, S.-H., Yu, S.-Y., Han, W., Yim, H.-S., & Moon, H.-K. 2005, JA&SS, 22, 383
  3. Bailey, M. E., Wilkinson, D. A., & Wolfendale, A. W. 1987, MNRAS, 227, 863 https://doi.org/10.1093/mnras/227.4.863
  4. Baudin, F., Gabriel, A., & Gilbert, D. 1993, A&A, 276, L1
  5. Chang, H.-Y. 2006, JA&SS, 23, 199 https://doi.org/10.5140/JASS.2006.23.3.199
  6. Chang, H.-Y. 2007, JA&SS, 24, 261 https://doi.org/10.5140/JASS.2007.24.4.261
  7. Chang, H.-Y. & Moon, H.-K. 2005, PASJ, 57, 487
  8. Clube, S. V. M. & Napier,W. M. 1984a, Nature, 311, 635 https://doi.org/10.1038/311635a0
  9. Clube, S. V. M. & Napier,W. M. 1984b, MNRAS, 208, 575
  10. Clube, S. V. M. & Napier,W. M. 1996, QJRAS, 37, 617
  11. Davis, M., Hut, P., & Muller, R. A. 1984, Nature, 308, 715 https://doi.org/10.1038/308715a0
  12. Grieve, R. A. F. 1987, Annual Reviews of Earth and Planetary Sciences, 15, 245 https://doi.org/10.1146/annurev.ea.15.050187.001333
  13. Grieve, R. A. F. 1991, Meteoritics, 26, 175 https://doi.org/10.1111/j.1945-5100.1991.tb01038.x
  14. Grieve, R. A. F. & Shoemaker, E. M. 1994, in Hazards due to Comets and Asteroids, eds. T. Gehrels, M. S. Mathews, & A. Schumann (Tucson: University of Arizona), p.417
  15. Jetsu, L. 1997, A&A, 321, L33
  16. Jetsu, L. & Pelt, J. 2000, A&A, 353, 409
  17. Kim, D.-W., Byun, Y.-I., Kim, S.-Y., Kang, Y.-W., Han, W., Moon, H.-K., & Yim, H.-S. 2005, JA&SS, 22, 385
  18. Kraal, E. R., Asphaug, E., Moore, J. M., Howard, A., & Bredt, A. 2008, Icarus, 194, 101 https://doi.org/10.1016/j.icarus.2007.09.028
  19. Matsumoto, M. & Kubotani, H. 1996, MNRAS, 282, 1407 https://doi.org/10.1093/mnras/282.4.1407
  20. Mihn, B.-H., Park, S.-Y., Roh, K.-M., Choi, K.-H., & Moon, H.-K. 2005, JA&SS, 22, 249
  21. Moon, H.-K., Min, B.-H., Fletcher, A. B., Kim, B.-G., Han,W.-Y., Chun, M.-Y., Jeon, Y.-B., & Lee, W.-B. 2001, JA&SS, 18, 191
  22. Napier,W. M. 2006, MNRAS, 366, 977 https://doi.org/10.1111/j.1365-2966.2005.09851.x
  23. Nurmi, P., Valtonen, M. J., & Zheng, J. Q. 2001, MNRAS, 327, 1367 https://doi.org/10.1046/j.1365-8711.2001.04854.x
  24. Oppenheim, A. V. 1965, Research Lab. of Electronics MIT Tech. Rep., 432
  25. Rampino, M. R. & Caldeira, K. 1992, Celestial Mechanics and Dynamical Astronomy, 54, 143 https://doi.org/10.1007/BF00049549
  26. Rampino, M. R. & Stothers, R. B. 1984a, Science, 226, 1427 https://doi.org/10.1126/science.226.4681.1427
  27. Rampino, M. R. & Stothers, R. B. 1984b, Nature, 308, 709 https://doi.org/10.1038/308709a0
  28. Stothers, R. B. 1992, Earth, Moon and Planets, 58, 145 https://doi.org/10.1007/BF00054651
  29. Stothers, R. B. 1998, MNRAS, 300, 1098 https://doi.org/10.1046/j.1365-8711.1998.02001.x
  30. Stothers, R. B. 2006, MNRAS, 365, 178 https://doi.org/10.1111/j.1365-2966.2005.09720.x
  31. Tremaine, S. 1986, in the Galaxy and the Solar System, eds. R. Smoluchowski, J. N. Bahcall, & M. S. Matthews (Arizona: University of Arizona Press), p.409
  32. Ulrych, T. J. 1971, Geophysics, 42, 1146 https://doi.org/10.1190/1.1440780
  33. van den Bergh, S. 1994, PASP, 106, 689 https://doi.org/10.1086/133431
  34. Weissman, P. 1985, Nature, 316, 572
  35. Weissman, P. 1990, Sky & Telescope, 79, 266
  36. Whitmire, D. P. & Jackson, A. A. 1984, Nature, 308, 713 https://doi.org/10.1038/308713a0
  37. Yabushita, S. 1991, MNRAS, 250, 481 https://doi.org/10.1093/mnras/250.3.481
  38. Yabushita, S. 1992, Earth, Moon and Planets, 58, 57 https://doi.org/10.1007/BF00058073
  39. Yabushita, S. 1996, MNRAS, 279, 727 https://doi.org/10.1093/mnras/279.3.727
  40. Yabushita, S. 2002, MNRAS, 334, 369 https://doi.org/10.1046/j.1365-8711.2002.05522.x