Biotransformation of Ginsenoside Rb1, Crocin, Amygdalin, Geniposide, Puerarin, Ginsenoside Re, Hesperidin, Poncirin, Glycyrrhizin, and Baicalin by Human Fecal Microflora and Its Relation to Cytotoxicity Against Tumor Cells

  • Kim, Young-Suk (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Kim, Jung-Jin (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Cho, Ki-Ho (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Jung, Woo-Sang (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Moon, Sang-Kwan (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Park, Eun-Kyung (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University)
  • Published : 2008.06.30

Abstract

To understand the role of intestinal microflora in the biological effect of functional herbs, which have been used in Korea, Japan, and China as traditional medicines, and suggest new bioactive compounds transformed from herbal constituents, the metabolic activities of the functional herb components (ginsenoside Rb1, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, poncirin, hesperidin, glycyrrhizin, and baicalin) toward their bioactive compounds (compound K, crocetin, benzaldehyde, genipin, daidzein, ginsenoside Rh1, ponciretin, hesperetin, 18b-glycyrrhetic acid, and baicalein) were measured in fecal specimens. The metabolic activities of these components were $882.7{\pm}814.5$, $3,938.1{\pm}2,700.8$, $2,375.5{\pm}913.7$, $1,179.4{\pm}795.7$, $24.6{\pm}10.5$, $11.4{\pm}10.8$, $578.8{\pm}206.1$, $1,150.0{\pm}266.1$, $47.3{\pm}58.6$, and $12,253.0{\pm}6,527.6\;{\mu}mol/h/g$, respectively. No differences were found in the metabolic activities of the tested components between males and females, although these metabolic activities between individuals are extensively different. The metabolites of functional herb components showed more potent cytotoxicity against tumor cells than nonmetabolites. These findings suggest that intestinal microflora may activate the pharmacological effect of herbal food and medicines and must be the biocatalytic converter for the transformation of herbal components to bioactive compounds.

Keywords

References

  1. Akao, T., H. Kida, M. Kanaoka, M. Hattori, and K. Kobashi. 1998. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50: 1155-1160 https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  2. Akao, T., M. Kanaoka, and K. Kobashi. 1998. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration -- measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21: 245-249 https://doi.org/10.1248/bpb.21.245
  3. Akao, T. 2000. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora. Biol. Pharm. Bull. 23: 1418-1423 https://doi.org/10.1248/bpb.23.1418
  4. Ameer, B., R. A. Weintraub, J. V. Johnson, R. A. Yost, and R. L. Rouseff. 1996. Flavone absorption after naringin, hesperidin and Citrus administration. Clin. Pharmacol. Therap. 60: 34-40 https://doi.org/10.1016/S0009-9236(96)90164-2
  5. Bae, E. A., M. J. Han, and D.-H. Kim. 1999. In vitro anti- Helicobacter pylori activity of some flavonoids and their metabolites. Planta Med. 65: 442-443 https://doi.org/10.1055/s-2006-960805
  6. Bae, E. A., S. Y. Park, and D.-H. Kim. 2000. Constitutive betaglucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 23: 1481-1485 https://doi.org/10.1248/bpb.23.1481
  7. Bae, E. A., N. Y. Kim, M. J. Han, M. K. Choo, and D.-H. Kim. 2003. Transformation of ginsenosides to compound K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9-14
  8. Bae, E. A., J. Shin, and D.-H. Kim. 2005. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol. Pharm. Bull. 28: 1903-1908 https://doi.org/10.1248/bpb.28.1903
  9. Cha, K. E. and H. Myung 2007. Cytotoxic effects of nanoparticles assessed in vitro and in vivo. J. Microbiol. Biotechnol. 17: 1573-1578
  10. Erlund, I., E. Meririnne, G. Alfthan, and A. Aro. 2001. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J. Nutr. 131: 235-241 https://doi.org/10.1093/jn/131.2.235
  11. Goldin, B. R., L. Swenson, J. Dwyer, M. Sexon, and S. L. Gorbach. 1980. Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J. Natl. Cancer Inst. 64: 255-261 https://doi.org/10.1093/jnci/64.2.255
  12. Ikeda, N., Y. Saito, J. Shimazu, A. Ochi, J. Mizutani, and J. Watanabe. 1994. Variations in concentrations of bacterial metabolites, enzyme activities, moisture, pH and bacterial composition between and within individuals in faeces of seven healthy adults. J. Appl. Bacteriol. 77: 185-194 https://doi.org/10.1111/j.1365-2672.1994.tb03063.x
  13. Kim, D.-H., E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim, and M. J. Han. 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21: 17-23 https://doi.org/10.1007/BF03216747
  14. Kim, D.-H. 2002. Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8: 35-43
  15. Kobashi, K., H. Nakata, H. Takebe, and K. Terasawa. 1984. Relation of intestinal bacteria to pharmacological effect of glycosides. Wakan-iyaku-kaishi 1: 166-167
  16. Kobashi, K. and T. Akao. 1997. Relation of intestinal bacteria to pharmacological effect of glycosides. Biosci. Microflora 16: 1-7 https://doi.org/10.12938/bifidus1996.16.1
  17. Lee, I. A., J. H. Lee, N. I. Baek, and D. H. Kim. 2005. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol. Pharm. Bull. 28: 2106-2110 https://doi.org/10.1248/bpb.28.2106
  18. Lee, D. K., Y. S. Kim, C. N. Ko, K. H. Cho, H. S. Bae, K. S. Lee, J. J. Kim, E. K. Park, and D. H. Kim. 2003. Fecal metabolic activities of herbal components to bioactive compounds. Arch. Pharm. Res. 25: 165-169 https://doi.org/10.1007/BF02976558
  19. Ling, W. H., R. Korpela, H. Mykkanen, S. Salminen, and O. Hanniinen. 1994. Lactobacillus strain GG supplementation decreases colonic hydrolytic and reductive enzyme activities in healthy female adults. J. Nutr. 124: 18-23 https://doi.org/10.1093/jn/124.1.18
  20. Mallet, A. K., I. R. Rowland, C. A. Bearne, J. C. Flynn, B. T. Fehilly, Y. S. Udeen, and M. J. G. Farthing. 1988. Effect of dietary supplements of apple pectin, wheat bran or fat on the enzyme activity of the human fecal flora. Microb. Ecol. Health Dis. 1: 23-39 https://doi.org/10.3109/08910608809140175
  21. Mykkanen, H., K. Laiho, and S. Salminen. 1998. Variations in fecal bacterial enzyme activities and associations with bowel function and diet in elderly subjects. J. Appl. Microbiol. 85: 37-41 https://doi.org/10.1046/j.1365-2672.1998.00454.x
  22. Park, S. H., E. K. Park, and D. H. Kim. 2005. Passive cutaneous anaphylaxis-inhibitory activity of flavanones from Citrus unshiu and Poncirus trifoliate. Planta Med. 71: 24-27 https://doi.org/10.1055/s-2005-837746
  23. Park, E. K., J. Shin, E. A. Bae, Y. C. Lee, and D. H. Kim. 2006. Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol. Pharm. Bull. 29: 2432-2435 https://doi.org/10.1248/bpb.29.2432
  24. Reddy, B. S., D. Hanson, S. Manar, L. Mathews, M. Abaschnig, C. Sharma, and B. Simi. 1980. Effect of high fat, high-beef diet and of mode of cooking of beef in the diet on fecal bacterial enzymes and fecal bile acids and neutral sterols. J. Nutr. 110: 1880-1887 https://doi.org/10.1093/jn/110.9.1880
  25. Rummey, C. J. and I. R. Rowland. 1992. In vivo and in vitro models of the human colonic flora. Crit. Rev. Food Sci. Nutr. 31: 299-331 https://doi.org/10.1080/10408399209527575
  26. Shin, Y. W., E. A. Bae, M. J. Han, and D. H. Kim. 2006. Metabolism of ginsenoside Rg5, a main constituent isolated from red ginseng, by human intestinal microflora and their antiallergic effect. J. Microbiol. Biotechnol. 16: 1791-1798
  27. Shin, Y.-W., E. A. Bae, B. Lee, S. W. Min, N. I. Baek, S. N. Ryu, H. G. Chung, and D. H. Kim. 2006. Effect of fermented lactic acid bacteria on antiallergic effect of Artemisia princeps pampanini. J. Microbiol. Biotechnol. 16: 1464-1467
  28. Simon, S. I. and S. I. Gorbach. 1986. The human intestinal microflora. Digest. Dis. Sci. 31: 147S-162S https://doi.org/10.1007/BF01295996
  29. Taiming, L. and J. Xuehua. 2006. Investigation of the absorption mechanisms of baicalin and baicalein in rats. J. Pharm. Sci. 95: 1326-1333 https://doi.org/10.1002/jps.20593
  30. Wakabayashi, C., H. Hasegawa, J. Murata, and I. Saiki. 1998. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9: 411-417
  31. Yang, L., T. Akao, and K. Kobashi. 1995. Purification and characterization of a geniposide-hydrolyzing beta-glucosidase from Eubacterium sp. A-44, a strict anaerobe from human feces. Biol. Pharm. Bull. 18: 1175-1178 https://doi.org/10.1248/bpb.18.1175
  32. Yim, J. S., Y. S. Kim, S. K. Moon, K. H. Cho, H. S. Bae, J. J. Kim, E. K. Park, and D. H. Kim. 2004. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull. 27: 1580-1593 https://doi.org/10.1248/bpb.27.1580