A Novel Negative Regulatory Factor for Nematicidal Cry Protein Gene Expression in Bacillus thuringiensis

  • Yu, Ziquan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Bai, Peisheng (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Ye, Weixing (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhang, Fengjuan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Ruan, Lifang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Yu, Ziniu (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Sun, Ming (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
  • Published : 2008.06.30

Abstract

A 3-kb HindIII fragment bearing the cry6Aa2 gene and the adjacent and intergenic regions was cloned from Bacillus thuringiensis strain YBT-1518. Two open reading frames (ORFs), namely, orf1 (termed cry6Aa2) and orf2 that were separated by an inverted-repeat sequence were identified. orf1 encoded a 54-kDa protein that exhibited high toxicity to the plant-parasitic nematode Meloidogyne hapla. The orf2 expression product was not detected by SDS-PAGE, but its mRNA was detected by RT-PCR. The orf2 coexpressed with orf1 at a high level in the absence of the inverted-repeat sequence, whereas, the expression level of otfl was decreased. When orf2 was mutated, the level of orf1 expression was enhanced obviously. In conclusion, the inverted-repeat sequence disturbs orf2 expression, and the orf2 downregulates orf1 expression. This is an example of novel negative regulation in B. thuringiensis and a potential method for enhancing the expression level of cry genes.

Keywords

References

  1. Agaisse, H. and D. Lereclus. 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J. Bacteriol. 177: 6027-6032 https://doi.org/10.1128/jb.177.21.6027-6032.1995
  2. Agaisse, H. and D. Lereclus. 1996. STAB-SD: A Shine- Dalgarno sequence in the 5' untranslated region is a determinant of mRNA stability. Mol. Microbiol. 20: 633-643 https://doi.org/10.1046/j.1365-2958.1996.5401046.x
  3. Andrup, L., J. Damgaard, and K. Wassermann. 1993. Mobilization of small plasmids in Bacillus thuringiensis subsp. israelensis is accompanied by specific aggregation. J. Bacteriol. 175: 6530-6536 https://doi.org/10.1128/jb.175.20.6530-6536.1993
  4. Arantes, O. and D. Lereclus. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115-119 https://doi.org/10.1016/0378-1119(91)90495-W
  5. Aronson, A. I., N. Angelo, and S. C. Holt. 1971. Regulation of extracellular protease production in Bacillus cereus T: Characterization of mutants producing altered amounts of protease. J. Bacteriol. 106: 1016-1025
  6. Baum, J. A. and T. Malvar. 1995. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol. 18: 1-2 https://doi.org/10.1111/j.1365-2958.1995.mmi_18010001.x
  7. Borgonie, G., M. Claeys, F. Leyns, G. Arnaut, and D. De Waele. 1996. Effect of nematicidal Bacillus thuringiensis strains on free living nematodes. 1. Light microscopic observations, species and biological stage specificity and identification of resistant mutants of Caenorhabditis elegans. Fund. Appl. Nematol. 19: 391-398
  8. Crickmore, N., D. R. Zeigler, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, A. Bravo, and D. H. Dean. 2007. "Bacillus thuringiensis toxin nomenclature". http://www.lifesci. sussex.ac.uk/Home/Neil_Crickmore/Bt/
  9. Dervyn, E., S. Poncet, A. Klier, and G. Rapoport. 1995. Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp israelensis. J. Bacteriol. 177: 2283-2291 https://doi.org/10.1128/jb.177.9.2283-2291.1995
  10. Donovan, W. P., Y. Tan, and A. C. Slaney. 1997. Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl. Environ. Microbiol. 63: 2311-2317
  11. Guerout-Fleury, A.-M., K. Shazand, N. Frandsen, and P. Stragier. 1995. Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167: 335-336 https://doi.org/10.1016/0378-1119(95)00652-4
  12. Kalman, S., K. L. Keehne, N. Cooper, M. S. Reynoso, and T. Yamamoto. 1995. Enhanced production of insecticidal protein in Bacillus thuringiensis strain carrying an additional crystal protein gene in their chromosome. Appl. Environ. Microbiol. 61: 3063-3068
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature (London) 227: 680-685 https://doi.org/10.1038/227680a0
  14. Lenin, K., M. Asia Mariam, and V. Udayasuriyan. 2001. Expression of cry2Aa gene in an acrystalliferous Bacillus thuringiensis strain and toxicity of Cry2Aa against Helicoverpa armigera. World J. Microbiol. Biotechnol. 17: 273-278 https://doi.org/10.1023/A:1016674417728
  15. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  16. Marroquin, L. D., D. Elyassnia, J. S. Griffitts, J. S. Feitelson, and R. V. Aroian. 2000. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155: 1693-1699
  17. Mizuki, E., Y. S. Park, H. Saitoh, S. Yamashita, T. Akao, K. Higuchi, and M. Ohba. 2000. Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clin. Diagn. Lab. Immunol. 7: 625-634
  18. Mohd-Salleh, M. B., C. C. Beegle, and L. C. Lewis. 1980. Fermentation media and production of exotoxin by three varieties of Bacillus thuringiensis. J. Invertebr. Pathol. 35: 75- 83 https://doi.org/10.1016/0022-2011(80)90086-5
  19. Naresh, A., A. Selvapandiyan, A. Neema, and R. K. Bhatnagar. 2003. Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 310: 158-162 https://doi.org/10.1016/j.bbrc.2003.08.137
  20. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbour Laboratory Press, Cold Spring Harbor, New York
  21. Sasser, J. N. and D. W. Freckman. 1987. A world perspective on nematology: The role of the society, pp. 7-14. In J. A. Veech and D. W. Dickerson (eds.), Vistas on Nematology. Society of Nematologists, Hyattsville, MD
  22. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806
  23. Schnepf, H. E. and H. R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893-2897
  24. Shao, Z.-Z., Z. D. Liu, and Z. N. Yu. 2001. Effects of the 20-kilodalton helper protein on Cry1Ac production and spore formation in Bacillus thuringiensis. Appl. Environ. Microbiol. 67: 5362-5369 https://doi.org/10.1128/AEM.67.12.5362-5369.2001
  25. Wei, J. Z., K. Hale, L. Carta, E. Platzer, C. Wong, S. C. Fang, and R. V. Aroian. 2003. Bacillus thuringiensis crystal protein that target nematodes. Proc. Natl. Acad. Sci. USA 100: 2760- 2765
  26. Wu, D. and B. A. Federici. 1995. Improved production of the insecticidal CryIVD protein in Bacillus thuringiensis using cry1A(c) promoters to express the gene for an associated 20- kDa protein. Appl. Microbiol. Biotechnol. 42: 697-702 https://doi.org/10.1007/BF00171947