Effects of Barley Straw Management Practices on Greenhouse Gases(GHGs) Emission During Rice Cultivation in Rice-barley Double Cropping System

벼보리 이모작 재배에서 보리짚 처리 방법이 벼재배시 온실가스 배출에 미치는 영향

  • Ko, Jee-Yeon (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Lee, Jae-Saeng (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Jung, Ki-yul (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Choi, Young-Dae (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Ramos, Edwin P (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Yun, Eul-Soo (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Kang, Hwang-Won (National Institute of Crop Science, Yeongnam Agricultural Research Institute) ;
  • Park, Seong-Tae (National Institute of Crop Science, Environment and Biotechnology Division)
  • Received : 2008.01.18
  • Accepted : 2008.02.13
  • Published : 2008.02.28

Abstract

Because main barley straw management is changing these days from off-fields to burning that may relate to air quality concerning the global warming, this study was conducted to investigate the effects of barley-straw management practices on greenhouse gas emissions during rice cultivation in rice-barley double cropping system. The treatments were barley straw burning, off-field usage of barley straw and incorporation of barley straw in paddy fields. Laboratory experiment showed that burning of barley straw at the rate of $4.5Mg\;ha^{-1}$ emitted GHGs in the amounts of 4,607, 19.5, and $0.9kg\;ha^{-1}$ of $CO_2$, $CH_4$, and $N_2O$, respectively. During the rice cultivation of the rice-barley double cropping system, the highest GHG emission by evaluated close-static chamber method was observed from the soil incorporation of barley straw with 387 and $1.0kg\;ha^{-1}$ of $CH_4$ and $N_2O$, respectively. The GHGs emissions from the barley straw burning and off-field usage treatments were 233 and $160kg\;ha^{-1}$ for $CH_4$ and 0.80 and $0.79kg\;ha^{-1}$ for $N_2O$, respectively. The barley straw burning treatment showed the greatest GHGs emission among barley straw management practices in rice-barley double cropping system when considering GHGs emissions both during burning and from paddy fields during the cropping seasons. As a result, the GHGs emissions recorded in the barley straw incorporation to soil and off-field usage treatments were 22.4 and 66.8%, respectively, less than sum of GHGs emissions from the burning of barley straw and from paddy fields during rice cultivation.

벼-보리 이모작 재배시 발생하는 보릿짚은 예전에는 포장에서 수거되어 땔감이나 우사의 깔집 등으로 주로 이용되었으나 농촌 노동력 부족으로 인하여 소각이나 토양혼입 등으로 처리방법이 바뀜에 따라 농업생태계에 미치는 영향이 커지고 있다. 따라서 벼-보리 이모작 재배시 주요 보릿짚 처리방법인 소각, 논으로부터 제거, 토양 내 혼입 처리에 따른 온실가스 발생량을 구명하여 보릿짚 처리방법이 온실가스 배출에 미치는 영향을 밝히고자 시험을 수행하였다. 보릿짚의 소각($4.5Mg\;ha^{-1}$)시 발생하는 온실가스 발생량은 $CO_2\;4,607kg\;ha^{-1}$, $CH_4\;19.5kg\;ha^{-1}$, $N_2O\;0.9kg\;ha^{-1}$$CO_2$의 발생량이 가장 많았으며 이는 보릿짚내 총 탄소함량의 45~55%에 해당하였다. 각각의 보릿짚 처리 후 논에서 배출되는 온실가스량은 $CH_4\;387kg\;ha^{-1}$, $N_2O\;1.0kg\;ha^{-1}$로 보릿짚이 토양에 혼입된 논토양에서 발생량이 가장 많았으며, 다음으로 소각처리한 논토양과 포장 밖으로 제거 처리한 논의 순이었다. 보릿짚 처리방법이 온난화가스 배출에 미치는 영향을 소각시 발생한 양 및 논토양에서 배출되는 양을 합하여 지구온난화지수(GWP)로 계산한 결과, 소각시 $10,880CO_2\;kg\;ha^{-1}$, 토양혼입시 $8,439CO_2\;kg\;ha^{-1}$, 포장 밖 제거시 $3,614CO_2\;kg\;ha^{-1}$의 온실가스가 발생하여 소각처리에 비해 토양혼입과 포장 밖 제거시 각각 22.4%와 66.8%의 온실가스 배출량이 감소하였다.

Keywords

References

  1. Abao, E.B., K.F. Bronson, R. Wassmann and U. Singh. 2000. Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions. Nutr. Cycl. Agroecosyst. 58 : 131-140 https://doi.org/10.1023/A:1009842502608
  2. Boopathy, R., B.R. Asrabadi and T.G. Ferguson. 2002. Sugar Cane (Saccharum officinarum L) Burning and asthma in southeast Louisiana, USA. Bull. Environ. Toxicol. 68: 173-179
  3. Deborah, A. B., R.H. William, G.M. Randall and K. van Chris. 1999. Methane pool and flux dynamics in a rice field following straw incorporation. Soil Bio. Bioch. 31: 1313-1322 https://doi.org/10.1016/S0038-0717(99)00050-4
  4. Gotoh, S. and Y. Onikura. 1971. Organic acids in a flooded soil receiving added rice straw and their effect on the growth of rice. Soil Sci. Plant Nutri. 17: 1-8 https://doi.org/10.1080/00380768.1971.10432846
  5. Hwang, S. and K. Hanaki. 2000. Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production. Bioresource Technology 71(2) : 159-165 https://doi.org/10.1016/S0960-8524(99)90068-8
  6. Katyal J. C. 1977. Influence of organic matter on the chemical and electro chemical properties of some flooded soil. Soil Biol. Biochem. 9: 259-266 https://doi.org/10.1016/0038-0717(77)90032-3
  7. Kimura, M. J. Murase, and Y. Lu. 2004. Carbon cycling in rice field ecosystems in the context of input, decomposition of organic materials and the fates of their end products($CO_{2} and CH_{4}$). Soil Biol. Biochem. 36: 1399-1416 https://doi.org/10.1016/j.soilbio.2004.03.006
  8. Ko, J.Y., H.W. Kang and K.B. Park. 1996. Effects of water management rice straw and compost on methane emission in dry seeded rice. J. Korean Soc. Soil Sci. Fer. 29(3): 212-217
  9. Ko, J. Y. H. W. Kang, J.S. Lee, C.S. Kim, S.T. Park, B.J. Kim. 2004. The impacts of barley straw burning having different moisture contents and harvesting timing on air pollutant emission. Koe. J. Env. Agri. 23(2): 99-103 https://doi.org/10.5338/KJEA.2004.23.2.099
  10. Ko, J.Y., H.W. Kang, J.S. Lee, C.S. Kim. 2003. Atmospheric environmental impact assessment by barley straw management practices on rice-barley double cropping system in Yeongnam. Research Report for 2003. Yeongnam Agricultural Research Institute(YARI), National Institute of Crop Science. R.D.A. Milyang, Korea
  11. Lemke, R.L., R.C. Izaurralde, M. Nyborg and E.D. Solberg. 1999. Tillage and N source influence soil emitted nitrous oxide in the Alberta parkland regime. Canadian J. of Soil Sci. 79: 15-24 https://doi.org/10.4141/S98-013
  12. Levin, J. S. 1991. Global biomass burning. MIT Press, Cambridge, MA
  13. McKenny, D.J., S.W. Wang, C.F. Drury and W.I. Findlay. 1993. Denitrification and mineralization in soil amended with legume, grass and corn residues. Soil Sci. Soc. Amer. J. 57: 1013-1020 https://doi.org/10.2136/sssaj1993.03615995005700040022x
  14. Milkha S. A, S. K. Tejinder, W.D. John and F.B. Kevin. 2001. Denitrification $C_{2}O and CO_{2}$ fluxes in rice wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Bio Fertil Soils 34: 375-389 https://doi.org/10.1007/s003740100420
  15. Miura, Y. and T. Kanno. 1997. Emission of trace gases ($CO_{2}$, CO, $CH_{4}$, and $N_{2}O$) resulting from rice straw burning. Soil Sci. Plant Nutri. 43: 849-854 https://doi.org/10.1080/00380768.1997.10414651
  16. Najita T, P. Gaffney, R. Hackney, M. Johnson, E. Linse, R. Mahdavi, B. Oulrey, H. Tran. 2001. Progress report on the phase down and the 1988-2000 Pause in the phase down of rice straw burning in the Sacramento valley air basin. California Air resource board(California ARB). Report to the legislature. California, USA
  17. Neue, H. U. and R. Wassaman. 1995. Mitigation options for methane emissions from rice fields. pp. 374. Climate change and rice field Springer publisher. Germany
  18. Ragab, M., R.S. Aldag and T. Mehana. 1994. Denitrification and nitrogen immobilization as affected by organic matter and different forms of nitrogen added to an anaerobic water sediment system. Biol. Fert. Soils 17: 219-224 https://doi.org/10.1007/BF00336326
  19. RDA. 1995. Standard investigation method for agricultural experiment. Rural Development Administration, Suwon, Korea
  20. Shin, S.O., S.T. Park, C.D. Hwang, D.Y. Hwang, S.Y. Kim and H.P. Moon. 2001 Changes of Rice Yield and Soil Physicochemical Properties in Long-term Dry Seeded Rice-Barley Double Cropping. Korean Journal of Crop Science. 46(6): 459-463
  21. Shin, Y.K., Y.S. Lee, S.H. Yun and M.E. Park. 1995. A simplified closed static chamber method for measuring methane flux in paddy soils. J. Korean Soc. Soil Sci. Fer. 28: 183-190
  22. Takashi, K., L. Xiaoxing, and H. Zuyun. 2001. The influence of moisture content on poly aromatic hydrocarbons emission during rice straw burning. Chemocphere Global Change Science 3: 117-122 https://doi.org/10.1016/S1465-9972(00)00045-3
  23. Torigoe, K., S. Hasegawa, O. Numata, S. Yazaki, M. Matsunga, N. Boku, M. Hiura and H. Ino. 2000. Influence of emission from rice straw burning on bronchial asthma in children. Pediatrics International : Official Journal of the Japan Pediatric Society 42: 114-150 https://doi.org/10.1046/j.1442-200x.2000.01192.x
  24. Yagi, K., and K. Minami. 1990. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr., 36: 599-610 https://doi.org/10.1080/00380768.1990.10416797
  25. Yu, K.W., and W.H. Patrick. 2003. Redox range with minimum nitrous oxide and methane production in a rice soil under different pH. Soil Sci. Soc. Am. J. 67 : 1952-1958 https://doi.org/10.2136/sssaj2003.1952
  26. Wang, Z. P., R. D. DeLaune, P. H. Masscheleyn, and W. H. Patrick Jr. 1993. Soil redox and pH effects on methane production in a flooded rice soil. Soil SCI. Soc. Am. J. 57: 382 -385 https://doi.org/10.2136/sssaj1993.03615995005700020016x
  27. Watanabe, A., M. Yoshida, M. Kimura, 1998. Contribution of rice straw carbon to CH4 emission from rice paddied using $^{13}$Cenriched rice straw. Journal of Geophysical research 104D, 8237-8242
  28. Watanabe, A., T. Takeda, M. Miura. 1999. Evaluation of carbon origins of $CH_{4}$ emitted from rice paddies. Journal of Geophysical research 104D, 13623-23630