하수(下水)슬러지 소각재의 특성(特性) 평가(評價) 및 재활용(再活用)을 위한 기초연구(基礎硏究)

A Study on the Characteristics and Utilization of Ash from Sewage Sludge Incinerator

  • 이화영 (한국과학기술연구원 2차전지연구센터)
  • Lee, Hwa-Young (Battery Research Center, Korea Institute of Science & Technology)
  • 발행 : 2008.06.27

초록

하수슬러지 소각재를 대상으로 화학 조성과 물리화학적 물성을 측정하고 재활용을 위한 경량재료 제조실험을 수행하였다. 경량재료는 하수슬러지 소각재를 원료로 하여 경량충진제와 무기바인더를 첨가하여 성형 및 소성하는 방법으로 제조하였으며, 제조 조건에 따른 비중과 압축강도 변화를 측정하였다. 비산재의 pH 경우 배기가스 중화를 위한 알칼리 첨가로 인하여 알칼리성인 pH 8.69로 나타났으나 바닥재는 중성인 pH 6.48이었다. 공정시험법에 근거하여 하수슬러지 소각재에 대한 중금속 용출실험 결과, Cd, Cu, Pb, As, Cr의 5개 원소 모두에 대하여 용출량이 검출한계치 이하로 나타났다. 동일한 혼합비율의 경우 비산재를 사용한 경량재료 시편의 압축강도가 바닥재에 비해 높게 나타나 비산재를 원료로 사용하는 것이 보다 효과적임을 알 수 있었다.

The measurement of physicochemical properties and chemical composition of SSA(sewage sludge ash) has been carried out and the preparation of lightweight material has also been performed using SSA for reuse as building or construction materials. For this aim, lightweight material has been prepared by forming the mixture of SSA, lightweight filler and inorganic binder followed by calcination at elevated temperature and characterized in terms of density and compressive strength. The pH of fly ash was found to be slightly alkaline, pH 8.69, due to the addition of caustic soda in order to neutralize the acidic gas while the pH of bottom ash was 6.48 Heavy metal leachability based on the standard leach test was also found to be below the detection limit for Cd, Cu, Pb, As and Cr of SSA. As far as the compressive strength of lightweight material was concerned, the compressive strength of lightweight material using fly ash was higher than that of lightweight material using bottom ash.

키워드

참고문헌

  1. 이화영, 2007: ASR 소각재의 이화학적 물성 및 재활용을 위한 기초연구, 자원리싸이클링, 16(2), pp. 32-39
  2. Babu, D. S., Babu, K. G, Wee, T. H., 2005: Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cement and Concrete Research, 35, pp. 1218-1223 https://doi.org/10.1016/j.cemconres.2004.11.015
  3. Tay, J. H., Show, K. Y., 1997: Resources recovery of sludge as a building and construction material, Water Science & Technology, 36(11), pp. 259-266
  4. Cheeseman, C. R., Virdi, G. S., 2005: Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash, Resources, Conservation & Recycling, 45, pp. 18-30 https://doi.org/10.1016/j.resconrec.2004.12.006
  5. Cheeseman, C. R., Makinde, A., Bethanis, S., 2005: Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash, Resources, Conservation & Technology, 43, pp. 147-162 https://doi.org/10.1016/j.resconrec.2004.05.004
  6. Hammy, F., Mercier, G., Blais, J., 2005: Removal of lead in APCR leachates from municipal solid waste incinerator using peat moss in a batch counter-current sorption process, Hydrometallurgy, 80, pp. 232-240 https://doi.org/10.1016/j.hydromet.2005.07.011
  7. Matsuzawa, Y. et al., 2006: Leaching behavior of heattreated waste ash, Fuel, 85, pp. 401-409 https://doi.org/10.1016/j.fuel.2005.07.016
  8. Fuoco, R. et al., 2005: Innovative stabilization/solidification processes of fly ash from an incinerator plant of urban solid waste, Microchemical Journal, 79, pp. 29-35 https://doi.org/10.1016/j.microc.2004.10.011
  9. Reich, J. et al., 2002: Effects of limestone addition and sintering on heavy metal leaching from hazardous waste incineration slag, Waste Management, 22, pp. 315-326 https://doi.org/10.1016/S0956-053X(01)00020-4
  10. Oygard, J. K., Gjengedal, E., Mage, A., 2005: Massbalance estimation of heavy metals and selected anions at a landfill receiving MSWI bottom ash and mixed construction wastes, Journal of Hazardous Materials, A123, pp. 70-75
  11. Gerven, T. V. et al., 2004: Effect of $CO_{2}$ on leaching from a cement-stabilized MSWI fly ash, Cement and Concrete Research, 34, pp. 1103-1109 https://doi.org/10.1016/j.cemconres.2003.11.022
  12. 환경부 고시 제 96-32호, 1996: 공정시험방법, 동화기술, pp. 417-418