An Investigation of Anisotropic Tensile Strength of Transversely Isotropic Rock by Critical Plane Approach

임계면법을 이용한 횡등방성 암석의 이방성 인장강도 해석

  • 이연규 (군산대학교 해양시스템공학)
  • Published : 2008.06.30

Abstract

In order to investigate the characteristics in tensile strength of transversely isotropic rock, a new anisotropic tensile failure function was suggested. According to the function, the tensile strength is minimum in the normal direction to a weakness plane and rises exponentially to its maximum on a plane perpendicular to the weakness plane. The anisotropic function is defined in terms of three strength parameters which can be identified trom direct tensile tests of transversely isotropic rocks. By incorporating the suggested function into the critical plane approach, a numerical procedure which enables to search the tensile strength and the direction of critical plane at failure was presented. The validity of the suggested numerical procedure was checked through the simulation of direct tensile tests reported in a literature. The numerical results from the simulation were in good agreements with those from the laboratory tests.

횡등방성 암석의 인장강도 특성 해석을 위하여 새로운 이방성 인장파괴함수를 제안하였다. 제안된 함수에서 인장강도는 연약면과 수직한 방향에서 최소가 되며 연약면과 평행한 방향쪽으로 지수함수적으로 증가하면서 최대값에 수렴된다. 제안된 이방성 인장파괴함수는 실험적으로 측정이 가능한 3개의 강도정수로 정의된다. 제안된 함수를 임계면법에 적용하여 연약면의 방향성에 따른 횡등방성 암석의 인장강도 및 파괴면의 방향을 탐색할 수 있는 수치해석적 기법을 제시하였다. 문헌에 보고된 횡등방성 암석의 직접인장시험 결과를 모사함으로써 제안된 방법의 적합성을 검토하였다. 수치해석결과와 직접인장시험 결과는 전반적으로 유사한 결과를 보여주었다.

Keywords

References

  1. 박철환, 2001, 이방성 암석의 탄성상수 분석연구, 터널과 지하공간 (한국암반공학회지) 11(1), 59-63
  2. 이연규, 2007, 임계면법을 이용한 횡등방성 암석의 강도 예측, 터널과 지하공간 (한국암반공학회지) 17(2), 119-127
  3. Amadei, B, 1988, Strength of a regularly jointed rock mass under biaxial and axisymmetric loading conditions. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 25(1), 3-13 https://doi.org/10.1016/0148-9062(88)92712-X
  4. Chen, C.-S., Pan, E. and Amadei, B., 1998, Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int. J. Rock. Mech. Min. Sci. 35(1), 43-61 https://doi.org/10.1016/S0148-9062(97)00329-X
  5. Claesson, J. and Bohloli, B., 2002, Brazilian test: stress field and tensile strength of aniotropic rocks using an analytical solution. Int. J. Rock. Mech. Min. Sci. 39, 991-1004 https://doi.org/10.1016/S1365-1609(02)00099-0
  6. Donath, F.A., 1964, Strength variation and deformation behavior in anisotropic rock. In 'State of stress in the Earth's crust', W.R. Judd (Ed.), 281-298
  7. Exadaktylos, G.E. and Kaklis, K.N., 2001, Application of an explicit solution for the transversely isotropic circular disc compressed diametrically. Int. J. Rock. Mech. Min. Sci. 38, 227-243 https://doi.org/10.1016/S1365-1609(00)00072-1
  8. ISRM, 1981, Rock characterization, testing and monitoring, ISRM suggested methods, E.T. Brown (Ed.), Pergamon Press Ltd
  9. Jaeger, J.C., 1960, Shear failure of anisotropic rocks. Geologic Magazine, 97, 65-72 https://doi.org/10.1017/S0016756800061100
  10. Lee, Y.-K., and Pietruszczak, S., 2008, Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses. Int. J. Rock Mech. Min. Sci. 45, 513-523 https://doi.org/10.1016/j.ijrmms.2007.07.017
  11. Liao, J.J., Yang, M.-T. and Hsieh, H.-Y., 1997, Direct tensile behavior of a transversely isotropic rock. Int. J. Rock. Mech. Min. Sci. 34(5), 837-849 https://doi.org/10.1016/S1365-1609(96)00065-4
  12. McLamore, R. and Gray, K.E., 1967, The mechanical behaviour of anisotropic sedimentary rocks. Trans. Am. Soc. Mech. Engrs Series B, 62-76
  13. Nova, R., 1980, The failure of tranversely isotropic rocks in triaxial compression. Int. J. Rock Mech. Min. Sci. 17, 325-332 https://doi.org/10.1016/0148-9062(80)90515-X
  14. Nova, R. and Zaninetti, A., 1990, An investigation into the tensile behavior of a schistose rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 27(4), 231-242
  15. Pietruszczak, S. and Z. Mroz, 2001, On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Meth. Goemech. 25, 509-524 https://doi.org/10.1002/nag.141
  16. Pietruszczak, S., D. Lydzba, and J.F. Shao, 2002, Modelling of inherent anisotropy in sedimentary rocks. Int. J. Solids Struct. 39, 637-648 https://doi.org/10.1016/S0020-7683(01)00110-X
  17. Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, 1992, Numerical recipes in Fortran. Cambridge University Press
  18. Ushaksaraei, R. and S. Pietruszczak, 2002, Failure criterion for structural masonry based on critical plane approach. J. Eng. Mech. 128(7), 769-778 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:7(769)
  19. Whittles, D.N., Yasar, E., Reddish, D.J. and Lloyd, P.W., 2002, Anisotropic strength and stiffness properties of some UK coal measure siltstones. Quart. J. Eng. Geol. Hydrogeol. 35, 155-166 https://doi.org/10.1144/1470-9236/1999-29