대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation

  • 최현일 (일리노이주 수자원조사국 기상연구팀)
  • 발행 : 2008.06.30

초록

대규모 육지수문모형(Land Surface Model, LSM)에서 종합적인 육지 물흐름 및 에너지흐름의 예측을 위해 새로운 지표면-지표하 연계 물흐름 모형이 지표하 물흐름 모의를 위한 3차원 체적평균 토양수분 이송방정식(Volume Averaged Soil-moisture Transpor, VAST)을 지표수 흐름모의를 위한 1차원 확산방정식과 연계하여 개발되었다. 각 흐름특성에 맞는 복합적인 수치해석법이 적용되어, 시간분할 방법에 의해 3차원 VAST 방정식의 종방향 흐름이 완전음해법에 의해 해석된 후, 횡방향 흐름이 양해법으로 구해지며, 그 후에 1차원 확산방정식은 MacCormack 유한차분법으로 계산한다. 이 새로운 흐름연계모형은 최신의 육지수문모형인 CLM(Common Land Model)내의 기존 1차원 수리수문계산부분을 대체하게 된다. CLM과 결합된 새로운 연계흐름모형은 오하이오 계곡부근의 시험유역에 적용되었으며, 모의결과는 지표면-지표하 물흐름 상호작용의 모의와 지표수 흐름추적방법을 사용한 새로운 모형의 유출예측이 실측치에 더 근접함을 보여준다. 이 개선된 육지수문모형은 지역적, 대륙적, 그리고 지구전체를 다루는 수문기상연구와 기후변화로 인한 재해예방을 위하여 기상모형인 CWRF(Climate extension of the next-generation Weather Research and Forecasting)와 연계될 예정이다.

The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

키워드

참고문헌

  1. 최현일 (2008) 대규모 육지수문모형에서 사용가능한 지표면 및 지표하 연계 물흐름 모형의 개발: 1. 모형설명. 한국방재학회 논문집 제출, 한국방재학회
  2. Akan, A.O. and Yen, B.C. (1981) Diffusion-wave flood routing in channel networks. J. Hydraul. Div., ASCE, Vol. 107, No. 6, pp. 719-732
  3. Beven, K.J. and Kirkby, M.J. (1979) A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., Vol. 24, No. 1, pp. 43-69 https://doi.org/10.1080/02626667909491834
  4. Chen, J. and Kumar, P. (2001) Topographic influence on the seasonal and interannual variation of water and energy balance of basin in North America. J. Climate, Vol. 14, pp. 1989-2014 https://doi.org/10.1175/1520-0442(2001)014<1989:TIOTSA>2.0.CO;2
  5. Corradini, C., Morbidelli, R., and Melone, F. (1998) On the interaction between infiltration and hortonian runoff. J. Hydrol., Vol. 204, pp. 52-67 https://doi.org/10.1016/S0022-1694(97)00100-5
  6. Janssen, P.H.M. and Heuberger, P.S.C. (1995) Calibration of process-oriented models. Ecol. Modelling., Vol. 83, pp. 55-66 https://doi.org/10.1016/0304-3800(95)00084-9
  7. Kazezyilmaz-Alhan, C.M., Medina Jr., C.C., and Rao, P. (2005) On numerical modeling of overland flow. Applied Mathematics and Computation, Vol. 166, No. 3, pp. 724-740 https://doi.org/10.1016/j.amc.2004.06.063
  8. Lear, M.S., Famiglietti, J.S., and Maidment, D.R. (2000) Upscaling River Network Extractions from Global Digital Elevation Models. CRWR Online Report 00-6, Center for Research in Water Resources, Bureau of Engineering Research, The University of Texas at Austin, Austin, TX. (Available at http://www.crwr.utexas.edu/online.html)
  9. Liang, X.-Z., Choi, H.I., Kunkel, K.E., Dai, Y., Joseph, E., Wang, J. X.L., and Kumar, P. (2005) Surface boundary conditions for mesoscale regional climate models. Earth Interactions, Vol. 9. No. 18, pp. 1-28
  10. MacCormack, R.W. (1971) Numerical solution of the interaction of a shock wave with a laminar boundary layer. Lecture Notes in Physics, Vol. 8, Springer-Verlag, New York, pp. 151-163 https://doi.org/10.1007/3-540-05407-3_24
  11. Morita, M. and Yen B.C. (2002) Modeling of conjunctive twodimensional surface-three-dimensional subsurface flows. J. Hyd. Eng., Vol. 128, No. 2, pp. 184-200 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:2(184)
  12. Niu, G.-Y.,Yang, Z.-L., Dickinson, R.E., and Gulden, L.E. (2005) A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in GCMs. J. Geophys. Res., Vol. 110, D21106, doi:10. 1029/2005JD006111
  13. Panday, S. and Huyakorn, P.S. (2004) A fully coupled physicallybased spatially-distributed model for evaluating surface/subsurface flow. Adv. Water Resour., Vol. 27, pp. 361-382 https://doi.org/10.1016/j.advwatres.2004.02.016
  14. Playan, E., Walker, W.R., and Merkley, G.P. (1994) Two Dimensional Simulation of Basin Irrigation, 1: Theory. J. Irrig. Drain Eng., Vol. 120, No. 5, pp. 837-856 https://doi.org/10.1061/(ASCE)0733-9437(1994)120:5(837)
  15. Singh, V. and Bhallamudi, S.M. (1997) A complete hydrodynamic border-strip irrigation model. J. Irr. and Dra. Eng., ASCE, Vol. 122, No. 4, pp. 189-197
  16. Singh, V. and Bhallamudi, S.M. (1998) Conjunctive surface-subsurface modeling of overland flow. Adv. in Water Resour., Vol. 21, No. 7, pp. 567-579 https://doi.org/10.1016/S0309-1708(97)00020-1
  17. Smith, R.E. and Woolhiser, D.A. (1971) Overland flow on an infiltrating surface. Water Resour. Res., Vol. 7, pp. 899-913 https://doi.org/10.1029/WR007i004p00899
  18. Stieglitz, M., Rind, D., Famiglietti, J., and Rosenzweig, C. (1997) An efficient approach to modeling the topographic control of surface hydrology for regional modeling. J. Climate, Vol. 10, pp. 118-137 https://doi.org/10.1175/1520-0442(1997)010<0118:AEATMT>2.0.CO;2
  19. Warrach, K., Stieglitz, M., Mengelkamp, H.-Theo, and Raschke, E. (2002) Advantages of a Topographically Controlled Runoff Simulation in a Soil-Vegetation-Atmosphere Transfer Model. J. Hydrometeorol., Vol. 3, pp. 131-148 https://doi.org/10.1175/1525-7541(2002)003<0131:AOATCR>2.0.CO;2
  20. Zhang, W. and Cundy, T.W. (1989) Modeling of two-dimensional overland flow. Water Resour. Res., Vol. 25, No. 9, pp. 2019-2035 https://doi.org/10.1029/WR025i009p02019