Biomechanical Effect of Total Disc Replacement on Lumbar Spinal Segment : A Finite Element Analysis

추간판 치환술이 요추분절에 미치는 생체역학적 영향 : 유한요소해석

  • 박원만 (경희대학교 대학원, 기계공학과) ;
  • 김기택 (경희대학교 의과대학 정형외과학교실) ;
  • 홍규표 (경희대학교 의과대학 정형외과학교실) ;
  • 김윤혁 (경희대학교 테크노공학대학) ;
  • 오택열 (경희대학교 테크노공학대학)
  • Published : 2008.02.29

Abstract

The artificial discs have recently used to preserve the motion of the treated segment in lumbar spine surgery. However, there have been lack of biomechanical information of the artificial discs to explain current clinical controversies such as long-term results of implant wear and excessive facet contact forces. In this study, we investigated the biomechanical effects of three artificial implants on the lumbar spinal segments by finite element analysis. The finite element model of intact lumbar spine(L1-S) was developed and the three implants were inserted in L4-L5 segment of the spine model. 5 Nm of flexion and extension moments were applied on the superior plate of L1 with 400 N of compressive load. Excessive motions and high facet contact forces at the surgical level were generated in the all three implanted models. In the flexion, the peak von-Mises stresses in the semi-constrained type implant was higher than those in the un-constrained type implant which would cause wear on the polyethylene core. The results of the study would provide a biomechanical guideline for selecting optimal surgical approach or evaluating the current design of the implants, or developing a new implant.

Keywords

References

  1. 대한정형외과학회, 정형외과학, 최신의학사, pp. 428-468, 1999
  2. 정성수, 이종서, 김상현, 강경백, 박재철, "요추 인공추간판 치환술에서 시상면 정렬과 요추 가동성의 변화", 대한정형외과학회지, 제40권, 제2호, pp. 673-678, 2005 https://doi.org/10.4055/jkoa.2005.40.6.673
  3. Fritzell, P., Hagg, O., Wessberg, P. and Nordwall, A., "Chronic Low Back Pain and Fusion: A Comparison of Three Surgical Techniques: A Prospective Multicenter Randomized Study from the Swedish Lumbar Spine Study Group", Spine, Vol. 27, No. 11, pp. 1131-1141, 2002 https://doi.org/10.1097/00007632-200206010-00002
  4. Moore, K. R., Pinto, M. R. and Butler, L. M., "Degenerative Disc Disease Treated with Combined Anterior and Posterior Arthrodesis and Posterior Instrumentation", Spine, Vol. 27, No. 11, pp. 1680-1686, 2002 https://doi.org/10.1097/00007632-200208010-00018
  5. Goto, K., Tajima, N. and Chosa, E., "Effects of Lumbar Spinal Fusion on the Other Lumbar Intervertebral Levels", Journal of Orthopaedic Science, Vol. 8, No. 4, pp. 577-584, 2003 https://doi.org/10.1007/s00776-003-0675-1
  6. Brian, J. C. F. and James, D., "Total Disc Replacement in the Lumbar Spine : A Systematic Review of the Literature", European Spine Journal, Vol. 15, Suppl. 15, pp. S439-S447, 2006 https://doi.org/10.1007/s00586-006-0186-9
  7. 김영은, 윤상석, 정상기, "순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소모델을 이용한 생체역학적 분석", 한국정밀공학회지, 제23권, 제4호, pp. 176-182, 2006
  8. David, T., "Revision of a Charite Artificial Disc 9.5 Years in vivo to a New Charite Artificial Disc: Case Report and Explant Analysis", European Spine Journal, Vol. 14, No. 5, pp. 507-511, 2005 https://doi.org/10.1007/s00586-004-0842-x
  9. Link, H. D., "History, Design and Biomechanics of the LINK SB Charite Artificial Disc", European Spine Journal, Vol. 11, Suppl. 2, pp. S98-S105, 2002
  10. van Ooij, A., Oner, F. C. and Verbout, A. J., "Complications of Artificial Disc Replacement : A Report of 27 Patients with the SB Charite Disc", Journal of Spinal Disorders & Techniques, Vol. 16, No. 4, pp. 369-383, 2003 https://doi.org/10.1097/00024720-200308000-00009
  11. Denoziere, G. and Ku, D. N., "Biomechanical Comparison between Fusion of Two Vertebrae and Implantation of an Artificial Intervertebral Disc", Journal of Biomechanics, Vol. 39, No. 4, pp. 766-775, 2006 https://doi.org/10.1016/j.jbiomech.2004.07.039
  12. Zhong, Z. C., Wei, S. H., Wang, J. P., Feng, C. K., Chen, C. S. and Yu, C. H., "Finite Element Analysis of the Lumbar Spine with a New Cage Using a Topology Optimization Method", Medical Engineering & Physics, Vol. 28, No. 1, pp. 90-98, 2006 https://doi.org/10.1016/j.medengphy.2005.03.007
  13. Polikeit, A., Ferguson, S. J., Nolte, L. P. and Orr, T. E., "Factors Influencing Stresses in the Lumbar Spine after the Insertion of Intervertebral Gages: Finite Element Analysis", European Spine Journal, Vol. 12, No. 4, pp. 413-420, 2003 https://doi.org/10.1007/s00586-002-0505-8
  14. Rohlmann, A., Zander, T. and Bergmann, G., "Comparison of the Biomechanical effects of Posterior And Anterior Spine-stabilizing Implants", European Spine Journal, Vol. 14, No. 5, pp. 445-53, 2005 https://doi.org/10.1007/s00586-004-0784-3
  15. Zander, T., Rohlmann, A., Calisse, J. and Bergmann, G., "Estimation of Muscle Forces in the Lumbar Spine During Upper-body Inclination", Clinical Biomechanics, Vol. 16, No. l, pp. S73-S80, 2001 https://doi.org/10.1016/S0268-0033(00)00108-X
  16. Lu, Y. M., Hutton, W. C. and Gharpuray, V. M., "Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model", Spine, Vol. 21, No. 22, pp. 2570-2579, 1996 https://doi.org/10.1097/00007632-199611150-00006
  17. Natarajan, R. N. and Andersson, G. B. J., "The Influence of Lumbar Disc Height and Cross-sectional Area on the Mechanical Response of the Disc to Physiologic Loading", Spine, Vol. 24, No. 18, pp. 1973-1881, 1999 https://doi.org/10.1097/00007632-199910010-00002
  18. Lee, K. K., Teo, E. C., Fuss, F. K., Vanneuville, V., Qiu, T. X., Ng, H. W., Yang, K. and Sabitzer, R. J., "Finite-Element Analysis for Lumbar Interbody Fusion Under Axial Loading", IEEE Transactions on Biomedical Engineering, Vol. 51, No. 3, pp. 393-399, 2004 https://doi.org/10.1109/TBME.2003.820994
  19. Wang, J. L., Parnianpour, M., Shirazi-Adl, A. and Engin, A. E., "Rate effect on Sharing of Passive Lumbar Motion Segment Under Load-controlled Sagittal Flexion: Viscoelastic Finite Element Analysis", Theoretical and Applied Fracture Mechanics, Vol. 32, No. 2, pp. 119-128, 1999 https://doi.org/10.1016/S0167-8442(99)00032-4
  20. Chen, C. S., Feng, C. K., Cheng, C. K., Tzeng, M. J., Liu, C. L. and Chen, W. J., "Biomechanical Analysis of the Disc Adjacent to Posterolateral Fusion with Laminectomy in Lumbar Spine", Journal of Spinal Disorders and Techniques, Vol. 18, No. 1, pp. 58-65, 2005 https://doi.org/10.1097/01.bsd.0000123426.12852.e7
  21. Moore, K. L. and Daliey A. F., Clinically Oriented Oriented Anatomy, Lippincott Williams & Wilkins, Baltimore, pp. 431-502, 2006
  22. Rohlmann, A., Zander, T. and Bergmann, G., "Effect of Total Disc Replacement with Prodisc on Intersegmental Rotation of the Lumbar Spine", Spine, Vol. 30, No. 7, pp. 738-743, 2005 https://doi.org/10.1097/01.brs.0000157413.72276.c4
  23. Goel, V. K., Grauer, J. N., Patel, T. Ch., Biyani, A., Sairyo, K., Vishnubhotla, S., Matyas, A., Cowgill, I., Shaw, M., Long, R., Dick, D., Panjabi, M. M. and Serhan, H., "Effects of Charite Artificial Disc on the Implanted and Adjacent Spinal Segments Mechanics Using a Hybrid Testing Protocol", Spine, Vol. 30, No. 24, pp. 2755-2764, 2005 https://doi.org/10.1097/01.brs.0000195897.17277.67
  24. Tiainen, V., "Amorphous Carbon as a Bio-mechanical Coating - Mechanical Properties and Biological Applications", Diamond and Related Materials, Vol. 10, No. 2, pp. 153-160, 2001 https://doi.org/10.1016/S0925-9635(00)00462-3
  25. Patwardhan, A., G., Havey, R., M., Meade, K., P., Lee, B. and Dunlap, B., "A Follower Load Increases the Load-carrying Capacity of the Lumbar Spine in Compression", Spine, Vol. 24, No. 10, pp. 1003-1009, 1999 https://doi.org/10.1097/00007632-199905150-00014
  26. Yamamoto, I., Panjabi, M. M., Crisco, T. and Oxalnd, T., "Three-dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint", Spine, Vol. 14, No. 11, pp. 1256-1260, 1989 https://doi.org/10.1097/00007632-198911000-00020
  27. Rohlmann, A., Neller, S., Claes, L., Bergmann, G. and Wilke, H. J., "Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine", Spine, Vol. 26, No. 24, pp. E557-E561, 2001 https://doi.org/10.1097/00007632-200112150-00014
  28. Clare, C. M. and Steven M. K., "Ionizing Radiation and Orthopaedic Prostheses", Nuclear Instruments and Methods in Physics Research B, Vol. 36, pp. 30-37, 2005 https://doi.org/10.1016/0168-583X(89)90056-6