DOI QR코드

DOI QR Code

Application on Multi-biomarker Assessment in Environmental Health Status Monitoring of Coastal System

해역 건강도 평가를 위한 다매체 바이오마커 적용

  • 정지현 (한국해양연구원 남해연구소) ;
  • 류태권 (한국해양연구원 남해연구소) ;
  • 이택견 (한국해양연구원 남해연구소)
  • Published : 2008.03.30

Abstract

Application of biomarkers for assessing marine environmental health risk is a relatively new field. According to the National Research Council and the World Health Organization, biomarkers can be divided into three classes: biomarkers of exposure, biomarkers of effect, and biomarkers of susceptibility. In order to assess exposure to or effect of the environmental pollutants on marine ecosystem, the following set of biomarkers can be examined: detoxification, oxidative stress, biotransformation products, stress responses, apoptosis, physiological metabolisms, neuromuscular responses, reproductions, steroid hormones, antioxidants, genetic modifications. Since early 1990s, several biomarker research groups have developed health indices of marine organisms to be used for assessing the state of the marine environment. Biomarker indices can be used to interpret data obtained from monitoring biological effects. In this review, we will summarize Health assessment Index, Biomarker Index, Bioeffect Assessment Index and Generalized Linear Model. Measurements of biomarker responses and development of biomarker index in marine organisms from contaminated sites offer great a lot of information, which can be used in environmental monitoring programs, designed for various aspects of ecosystem risk assessment.

해양환경 건강성 평가에서 바이오마커의 적용은 상대적으로 새로운 분야이다. 국립학술원 및 세계보건기구에 따르면 바이오마커는 노출바이오마커, 영향바이오마커 및 민감바이오마커 등 3가지로 나누어진다. 해양생태계에 대한 환경오염물질의 노출 및 영향을 평가하기 위하여 다음과 같은 바이오마커들이 시험되고 있다: 해독, 산화스트레스, 분해산물, 스트레스 반응, 세포사멸, 물질대사, 신경반응, 생식, 스테로이드 호르몬, 항산화물질, 유전적 변형. 1990년대 초부터 여러 바이오마커 연구그룹들은 해양생물의 건강지수를 개발하여 해양환경의 상태를 평가하기 위한 수단으로 활용해 왔다. 바이오마커 지수는 생물학적 효과에 대한 모니터링활동으로부터 얻어진 자료의 해석에 사용될 수 있다. 본 총설에서는 이제까지 보고된 바이오마커 지수 관련 연구 중 대표적인 건강평가지수(Health assessment Index), 바이오마커 지수(Biomarker Index), 생물영향평가지수(Bioeffect Assessment Index) 및 일반화된 선형모델(Generalized Linear Model) 등의 연구를 요약하였다. 오염된 지역에 서식하는 해양생물의 바이오마커 반응 측정 및 바이오마커 지수 개발은 다양한 측면의 해양생태계 위해성 평가를 위해 고안된 환경모니터링 프로그램에 공헌할 수 있는 정보를 제공해 줄 수 있을 것이다.

Keywords

References

  1. Aas, E., T. Baussant, L. Balk, B. Liewenborg, and O.K. Andersen. 2000. PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: A laboratory experiment with Atlantic cod. Aquat. Toxicol., 51, 241-258 https://doi.org/10.1016/S0166-445X(00)00108-9
  2. Adams, S.M., A.M. Brown, and R.W. Goede. 1993. A quantitative health assessment index for rapid evaluation of fish condition in the field. Trans. Am. Fish. Soc., 122, 63-73 https://doi.org/10.1577/1548-8659(1993)122<0063:AQHAIF>2.3.CO;2
  3. Adams, S.M., K.D. Ham, M.S. Greeley, R.F. LeHew, D.E. Hinton, and C.F. Saylor. 1996. Downstream gradients in bioindicator responses: Point source contaminant effects on fish health. Can. J. Fish. Aquat. Sci., 53(10), 2177-2187 https://doi.org/10.1139/cjfas-53-10-2177
  4. Adams, S.M., L.R. Shugart, G.R. Southworth, and D.E. Hinton. 1990. Application of bioindicators in assessing the health of fish populations experiencing contaminant stress. p. 333-353. In: Biomarkers of environmental contamination, ed. by J.F. McCarthy and L.R. Shugart. Lewis, Boca Raton
  5. Ankley, G.T., V.S. Blazer, R.E. Reinert, and M. Agosin. 1986. Effects of Aroclor 1254 on cytochrome P-450- dependent monooxygenase, glutathione-S-transferase, and UDP-glucuronosyltransferase activities in channel catfish liver. Aquat. Toxicol., 9, 91-103 https://doi.org/10.1016/0166-445X(86)90016-0
  6. Ariese, F., S.J. Kok, M. Verkaik, C. Gooijer, N.H. Velthorst, and J.W. Hofstraat. 1993. Synchronous fluorescence spectrometry of fish bile: Arapid screening method for the biomonitoring of PAH exposure. Aquat. Toxicol., 26, 273-286 https://doi.org/10.1016/0166-445X(93)90034-X
  7. Arukwe, A., L. Forlin, and A. Goksoyr. 1997. Xenobiotic and steroid biotransformation enzymes in Atlantic salmon (Salmo salar) liver treated with an estrogenic compound, 4-nonylphenol. Environ. Toxicol. Chem., 16(12), 2576-2583 https://doi.org/10.1897/1551-5028(1997)016<2576:XASBEI>2.3.CO;2
  8. Beliaeff, B. and T. Burgeot. 2002. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem., 21(6), 1316-1322 https://doi.org/10.1897/1551-5028(2002)021<1316:IBRAUT>2.0.CO;2
  9. Binelli, A., F. Ricciardi, C. Riva, and A. Provini. 2005. Screening of POP pollution by AChE and EROD activities in Zebra mussels from the Italian Great Lakes. Chemosphere, 61, 1074-1082 https://doi.org/10.1016/j.chemosphere.2005.03.047
  10. Binelli, A., F. Ricciardi, C. Riva, and A. Provini. 2006. New evidences for old biomarkers: Effects of several xenobiotics on EROD and AChE activities in Zebra mussel (Dreissena polymorpha). Chemosphere, 62, 510- 519 https://doi.org/10.1016/j.chemosphere.2005.06.033
  11. Brodeur, J.C., C. Girard, and A. Hontela. 1997. Use of perifusion to assess in vitro the functional integrity of interrenal tissue in teleost fish from polluted sites. Environ. Toxicol. Chem., 16(10), 2171-2178 https://doi.org/10.1897/1551-5028(1997)016<2171:UOPTAI>2.3.CO;2
  12. Broeg, K., H.V. Westernhagen, S. Zander, W. Korting, and A. Koehler. 2005. The “bioeffect assessment index” (BAI): A concept for the quantification of effects of marine pollution by an integrated biomarker approach. Mar. Pollut. Bull., 50(5), 495-503 https://doi.org/10.1016/j.marpolbul.2005.02.042
  13. Broeg, K. and K.K. Lehtonen. 2006. Indices for the assessment of environmental pollution of the Baltic Sea coasts: Integrated assessment of a multi-biomarker approach. Mar. Pollut. Bull., 53, 508-522 https://doi.org/10.1016/j.marpolbul.2006.02.004
  14. Brown, P.J., S.M. Long, D.J. Spurgeon, C. Svendsen, and P.K. Hankard. 2004. Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. Chemosphere, 57(11), 1675-1681 https://doi.org/10.1016/j.chemosphere.2004.05.041
  15. Bucheli, T.D. and K. Kent. 1995. Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems. Crit. Rev. Enciron. Sci. Technol., 25(3), 201-268 https://doi.org/10.1080/10643389509388479
  16. Cairns, J., P.V. McCormick, and B.R. Niederlehner. 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia, 263(1), 1-44 https://doi.org/10.1007/BF00006084
  17. Chevre, N., F. Gagne, P. Gagnon, and C. Blaise. 2003. Application of rough sets analysis to identify polluted aquatic sites based on a battery of biomarkers: A comparison with classical methods. Chemosphere, 51(1), 13-23 https://doi.org/10.1016/S0045-6535(02)00818-4
  18. Coughlan, D.J., B.K. Baker, D.G. Cloutman, and W.M. Rash. 1996. Application and modification of the fish health assessment index used for largemouth bass in the Catawba River, North Carolina-South Carolina. p. 73-84. In: Multidimensional approaches to reservoir fisheries management: Proc. 3rd national reservoir fisheries Symp., Chattanooga, Tennessee, USA, June 12-14, 1995
  19. De la Torre, F.R., A. Salibián, and L. Ferrari. 2000. Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne cadmium. Eviron. Pollut., 109(2), 277-282 https://doi.org/10.1016/S0269-7491(99)00263-8
  20. Depledge, M.H. and M.C. Fossi. 1994. The role of biomarkers in environmental assessment (2). Invertebrates. Ecotoxicology, 3(3), 161-172 https://doi.org/10.1007/BF00117081
  21. Escher, M., T. Wahli, S. Buettner, W. Meier, and P. Burkhardt-Holm. 1999. The effect of sewage plant effluent on brown trout (Salmo trutta fario): A cage experiment. Aquat. Sci., 61(2), 93-110 https://doi.org/10.1007/s000270050055
  22. Fernandez-Alba, A.R., M.D. Hernando, L. Piedra, and Y. Chisti. 2002. Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal. Chim. Acta, 456(2), 303-312 https://doi.org/10.1016/S0003-2670(02)00037-5
  23. Galgani, F., G. Bocquene, and Y. Cadiou. 1992. Evidence of variation in cholinesterase activity in fish along a pollution gradient in the North Sea. Mar. Ecol.-Prog. Ser., 91, 77-82 https://doi.org/10.3354/meps091077
  24. Garvey, J.S. 1990. Metallothionein: A potential biomonitor of exposure to environmental toxins. p. 267-287. In: Biomarkers of environmental contamination, ed. by J.F. McCarthy and L.R. Shugar. Lewis, Boca Raton
  25. Giesy, X.P. and R.L. Graney. 1988. A review of selected clinical indicators of stress-induced changes in aquatic organisms. p. 160-201. In: Toxic contaminants and ecosystem health: A great lakes focus, ed. by M.S. Evans. John Wiley & Sons, New York
  26. Hagger, J.A., A.S. Fisher, S.J. Hill, M.H. Depledge, and A.N. Jha. 2002. Genotoxic, cytotoxic and ontogenetic effects of tri-n-butyltin on the marine worm, Platynereis dumerilii (Polychaeta: Nereidea). Aquat. Toxicol., 57(4), 243-255 https://doi.org/10.1016/S0166-445X(01)00200-4
  27. Heffernan, L.M. and G.W. Winston. 2000. Distribution of microsomal CO-binding chromophores and EROD activity in sea anemone tissues. Mar. Environ. Res., 50, 23-27 https://doi.org/10.1016/S0141-1136(00)00120-3
  28. Holdway, D.A., S.E. Brennan, and J.T. Ahokas. 1995. Short review of selected fish biomarkers of xenobiotic exposure with an example using fish mixed-function oxidase. Aust. J. Ecol., 20(1), 34-44 https://doi.org/10.1111/j.1442-9993.1995.tb00520.x
  29. Hontela, A., P. Dumont, D. Duclos, and R. Fortin. 1995. Endocrine and metabolic dysfunction in yellow perch, Perca flavescens, exposed to organic contaminants and heavy metals in the St. Lawrence River. Environ. Toxicol. Chem., 14(4), 725-731 https://doi.org/10.1897/1552-8618(1995)14[725:EAMDIY]2.0.CO;2
  30. Hylland, K., M. Sandvik, J.U. Skare, J. Beyer, E. Egaas, and A. Goksoyr. 1996. Biomarkers in flounder (Platichthys flesus): An evaluation of their use in pollution monitoring. Mar. Environ. Res., 42, 223-227 https://doi.org/10.1016/0141-1136(95)00034-8
  31. Janz, D.M., M.E. McMaster, K.R. Munkittrick, and G. van der Kraak. 1997. Elevated ovarian follicular apoptosis and heat shock protein-70 expression in white sucker exposed to bleached kraft pulp mill effluent. Toxicol. Appl. Pharmacol., 147(2), 391-398 https://doi.org/10.1006/taap.1997.8283
  32. Kammann, U., M. Friedrich, and H. Steinhart. 1996. Isolation of a metal-binding protein from ovaries of dab (Limanda limanda L.) distinct from metallothionein: Effect of cadmium exposure. Ecotox. Environ. Safe., 33(3), 281-288 https://doi.org/10.1006/eesa.1996.0036
  33. Klaverkamp, J.F., W.A. Macdonald, D.A. Duncan, and R. Wagemann. 1984. Metallothionein and acclimation to heavy metals in fish: A review. p. 99-113. In: Contaminant effects on fisheries, ed. by V.W. Cairns, P.V. Hodson and J.O. Nriagu. Wiley. New York
  34. Konradt, J. and T. Braunbeck. 2001. Alterations of selectes metabolic enzymes in fish following long-term exposure to contaminated streams. J. Aquat. Ecosyst. Stress Recov., 8, 299-318 https://doi.org/10.1023/A:1012928914322
  35. Krahn, M.M., D.G. Burrows, W.D. MacLeod, and D.C. Malins. 1987. Determination of individual metabolites of aromatic compounds in hydrolyzed bile of English sole (Parophrys vetulus) from polluted sites in Puget Sound, Washington. Arch. Environ. Contam. Toxicol., 16, 511- 522 https://doi.org/10.1007/BF01055807
  36. Kurelec, B. 1992. The multixenobiotic resistance mechanism in aquatic organisms. Crit. Rev. Toxicol., 22, 23-43 https://doi.org/10.3109/10408449209145320
  37. Levine, S.L., X.T. Oris, and T.E. Wissing. 1995. Influence of environmental factors on the physiological condition and hepatic ethoxyresorufin-O-deethylase (EROD) activity of gizzard shad (Dorosoma cepedianum). Environ. Toxicol. Chem., 14, 123-128 https://doi.org/10.1897/1552-8618(1995)14[123:LOEFOT]2.0.CO;2
  38. Machala, M., K. Nezveda, M. Petrivalsky, A.B. Jarosova, V. Piacka, and Z. Svobodova. 1997. Monooxygenase activities in carp as biochemical markers of pollution by polycyclic and polyhalogenated aromatic hydrocarbons: Choice of substrates and effects of temperature, gender and capture stress. Aquat. Toxicol., 37, 113-123 https://doi.org/10.1016/S0166-445X(96)00824-7
  39. McCarty, L.S. and K.R. Munkittrick. 1996. Environmental biomarkers in aquatic toxicology: Fiction, fantasy or functional? Human Ecol. Risk Assess., 2(2), 268-274 https://doi.org/10.1080/10807039609383607
  40. Melancon, M.J., R. Alscher, W. Benson, G. Kruzynski, R.F. Lee, H.C. Sikka, and R.B. Spies. 1992. Metabolic products as biomarkers. p. 87-124. In: Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress, ed. by R.J. Huggett, R.A. Kimerly, P.M. Mehrle and H.L. Bergman. Lewis, Boca Raton
  41. Napierska, D. and M. Podolska. 2005. Biomarkers of contaminant exposure: Results of a field study with flounder (Platichthys flesus) from the southern Baltic Sea. Mar. Pollut. Bull., 50(7), 758-767 https://doi.org/10.1016/j.marpolbul.2005.02.007
  42. Narbonne, J.M., M. Daube, C. Clerandeau, and P. Garrigues. 1999. Scale of classification based on biochemical markers in mussels: Application to pollution monitoring in European coasts. Biomarkers, 4(6), 415-424 https://doi.org/10.1080/135475099230589
  43. Overnell, J., R. McIntosh, and T.C. Fletcher. 1987. The level of liver metallothionein and zinc in plaice, Pleuronectes platessa L., during the breeding season, and the effect of estradiol injection. J. Fish Biol., 30, 539-546 https://doi.org/10.1111/j.1095-8649.1987.tb05781.x
  44. Peakall, D.W. 1994. Biomarkers: The way forward in environmental assessment. Toxicol. Ecotoxicol. News, 1, 55-60
  45. Piechotta, G., M. Lacorn, T. Lang, U. Kammann, T. Simat, H.S. Jenke, and H. Steinhart. 1999. Apoptosis in dab (Limanda limanda) as possible new biomarker for anthropogenic stress. Ecotox. Environ. Safe., 42(1), 50- 56 https://doi.org/10.1006/eesa.1998.1725
  46. Schleiger, S.L. 2004. Fish health assessment index study of four reservoirs in West-Central Georgia. North Am. J. Fisheries Manage., 24(4), 1173-1188 https://doi.org/10.1577/M03-084.1
  47. Sherry, J.P. 2003. The role of biomarkers in the health assessment of aquatic ecosystems. Aquat. Ecosyst. Health Manage., 6(4), 423-440 https://doi.org/10.1080/714044172
  48. Stegeman, J.J. and M.E. Hahn. 1994. Biochemistry and molecular biology of monooxygenase: Current perspective on forms, functions, and regulation of cytochrome P450 in aquatic species. p. 87-206. In: Aquatic toxicology: Molecular, Biochemical and Cellular Perspectives, ed. by D.C. Malins and G.K. Ostrander. Lewis, Boca Raton
  49. Sturm, A., H.C. da Silva de Assis, and P.D. Hansen. 1999. Cholinesterases of marine teleost fish: Enzymological characterization and potential use in the monitoring of neurotoxic contamination. Mar. Environ. Res., 47(4), 389-398 https://doi.org/10.1016/S0141-1136(98)00127-5
  50. Sturm, A., J. Wogram, H. Segner, and M. Liess. 2000. Different sensitivity to organophosphates of acetylcholinesterase and butyrylcholinesterase from threespined stickleback (Gasterosteus aculeatus): Aapplication in biomonitoring. Environ. Toxicol. Chem., 19(6), 1607- 1615 https://doi.org/10.1897/1551-5028(2000)019<1607:DSTOOA>2.3.CO;2
  51. Vaccaro, E., V. Meucci, L. Inotorre, D. Soldani, D. Di bello, V. Longo, P.G. Gervasi, and C. Pretti. 2005. Effects of 17-${\beta}$-estradiol, 4-nonylphenol and PCB 126 on the estrogenic activity and phase 1 and 2 biotransformation enzymes in male sea bass (Dicentrarchus labrax). Aquat. Toxicol., 75(4), 293-305 https://doi.org/10.1016/j.aquatox.2005.08.009
  52. Van der Oost R., A. Goksoyr, M. Celander, H. Heida, and N.P.E. Varmeulen. 1996. Biomonitoring of aquatic pollution with feral eel (Anguilla anguilla), II. Biomarkers: Pollution-induced biochemical responses. Aquat. Toxicol., 36, 189-222 https://doi.org/10.1016/S0166-445X(96)00802-8
  53. Yuan, Z., S. Courtenay, and I. Wirgin. 2006. Comparison of hepatic and extra hepatic induction of cytochrome P4501A by graded doses of aryl hydrocarbon receptor agonists in Atlantic tomcod from two populations. Aquat. Toxicol., 76, 306-320 https://doi.org/10.1016/j.aquatox.2005.10.006

Cited by

  1. Expression of Mycosporine-like Amino Acids Biosynthetic Genes in the Chlamydomonas sp. Exposed to Radiofrequency vol.14, pp.8, 2013, https://doi.org/10.5762/KAIS.2013.14.8.4086