Ostwald Ripening in Hydrogenated Lecithin-stabilized Oil-in-Water Nano-emulsions

수첨 레시틴으로 안정화된 오일/물 나노에멀젼에서의 Ostwald Ripening

  • Cho, Wan-Goo (Health Resources Department, College of Alternative Medicine, Jeonju University) ;
  • Yang, Hee-Jung (Department of Fine Chemistry, College of Nature & Life Science, Seoul National University of Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature & Life Science, Seoul National University of Technology)
  • 조완구 (전주대학교 대체의학대학 건강자원학부) ;
  • 양희정 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 박수남 (서울산업대학교 자연생명과학대학 정밀화학과)
  • Published : 2008.03.31

Abstract

Formation of oil-in-water nano-emulsions has been studied in oil/hydrogenated lecithin/water systems by two shear different instrument. The influence of surfactant concentration on nano-emulsion droplet size and stability has been studied. Droplet size was determined by dynamic light scattering, and nano-emulsion stability was evaluated by measuring the variation of droplet size as a function of time. The results obtained showed that the breakdown process of nano-emulsions studied could be attributed to Ostwald ripening. An increase of nano-emulsion instability with increase in surfactant concentration was found in the droplet size in the range of 100~200nm, however, an decrease of instability was found in the droplet size in the range of 300~400nm.

오일/수첨 레시틴/물 계에서 전단력이 다른 두 혼합기로 제조된 나노에멀젼의 안정성에 대하여 연구하였으며, 계면활성제의 농도에 따른 나노에멀젼의 입자 크기와 안정성을 조사하였다. 입자의 크기는 광산란법에 의하여 측정하였으며 입자크기의 시간에 따른 변화를 관찰하였다. 실험 결과 나노 에멀젼 불안정화 과정은 Ostwald ripening에 의해 지배되었다. 입자 크기가 100~200nm 범위에서는 오일에 대한 계면활성제의 비율이 증가함에 따라 안정성이 감소하였으나 입자 크기가 300~400nm의 범위에서는 반대의 경향을 보였다.

Keywords

References

  1. S. S. Davis, J. Hadgraft, and K. Palin, Encyclopedia of emulsion technology, eds. P. Becher, 2, 159, Dekker, New York and Basel (1983)
  2. S. Bhattacharya, M. H. Shylaja, M. S. Manjunath, and U. Sanker, Rheology of lecithin dispersions, J. Am. Oil Chem. Soc., 75, 871 (1998) https://doi.org/10.1007/s11746-998-0239-9
  3. R. Angelico, A. Ceglie, U. Olssen, and G. Palazzo, Phase diagram and phase properties of the system lecithin-water-cyclohexane, Langmuir, 16, 2124 (2000) https://doi.org/10.1021/la9909190
  4. F. Ishii, Phospholipids in emulsion and dispersion systems, Abura Kagaku, 41, 101 (1992)
  5. B. P. Binks, W. G. Cho, P. D. I. Fletcher, and D. N. Petsev, Stability of oil-in-water emulsions in a low interfacial tension system, Langmuir, 16, 1025 (2000) https://doi.org/10.1021/la990952m
  6. J. Soma and K. D. Papadopoulos, Ostwald ripening in sodium dodecyl sulfate-stabilized decane-in-water emulsions, J. Colloid and Interface Sci., 181, 220 (1996) https://doi.org/10.1006/jcis.1996.0373
  7. V. M. Sadtler, P. Imbert, and E. Dellacherie, Ostwald ripening of oil-in-water emulsions stabilized by phenoxy-substituted dextrans, J. Colloid and Interface Sci., 254, 355 (2002) https://doi.org/10.1006/jcis.2002.8624
  8. L. Wang, X. Li, Gaoyong, J. Dong, and J. Eastoe, Oil-in-water nanoemulsions for pesticide formulations, J. Colloid and Interface Sci., 314, 230 (2007) https://doi.org/10.1016/j.jcis.2007.04.079
  9. I. M. Lifshitz and V. V. Slezov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35 (1961) https://doi.org/10.1016/0022-3697(61)90054-3
  10. C. Wagner, Theorie der alterrung von niederschlagen durch umlosen, Zeit. Electrochem., 65, 581 (1961)
  11. A. S. Kabalnov, Can micelles mediate a mass transfer between oil droplets, Langmuir, 10, 680 (1994) https://doi.org/10.1021/la00015a015
  12. J. Otsuki and M. Seno, Kinetics of liquld-liquid extraction by micelles of hexadecyltrimethylammonium bromide: Theory of simultaneous diffusion and solubilization-desolubilization, J. Phys. Chem., 95, 5234 (1991) https://doi.org/10.1021/j100166a058
  13. D. J. McClements and S. R. Dungan, Factors that affect the rate of oil exchange between oil-in-water emulsion droplets stabilized by a nonionic surfactant; droplet size, surfactant concentration, and ionic strength, J. Phys. Chem., 97, 7304 (1993) https://doi.org/10.1021/j100130a030
  14. G. W. Lee and T. F. Tadros, Formation and stability of emulsions produced by dilution of emulsifyable 11 concentrates. Part II. The influence of surfactant concentration on the stability of oil-in-water emulsions., Colloids Surf., 5, 117 (1982) https://doi.org/10.1016/0166-6622(82)80067-X
  15. M. P. Aronson, The role of free surfactant in destabilizing oil-in-water emulsions, Langmuir, 5, 494 (1989) https://doi.org/10.1021/la00086a036
  16. M. P. Aronson, Flocculation of emulsions by free surfactant in purified systems, Colloids Surf., 58, 195 (1991) https://doi.org/10.1016/0166-6622(91)80207-5
  17. B. P. Binks, P. D. I. Fletcher, and D. I. Horsup, Effect of microemulsified surfactant in destabilising water-in-oil emulsions containing, Colloids Surf., 61, 291 (1991) https://doi.org/10.1016/0166-6622(91)80317-H
  18. W. R. Liu, D. J. Sun, C. F. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Interface Sci., 303(2), 557 (2006) https://doi.org/10.1016/j.jcis.2006.07.055
  19. Y. D. Smet, L. Deriemaeker, and R. Finsy, Ostwald ripening of alkane emulsions in the presence of surfactant micelles, Langmuir, 15, 6745 (1999) https://doi.org/10.1021/la9901736
  20. K. N. Hoang, V. B. La, L. Deriemaeker, and R. Finsy, Ostwald ripening of alkane emulsions stabilized by polyethylene glycol monolaurate, Langmuir, 17, 5166 (2001) https://doi.org/10.1021/la010306z