DOI QR코드

DOI QR Code

습윤 모래에서 인장강도의 예측 (I) : 이론

Prediction of Tensile Strength of Wet Sand (I) : Theory

  • 김태형 (한국해양대학교 건설환경공학부)
  • Kim, Tae-Hyung (Division of Civil and Environmental Engrg., Korea Maritime Univ.)
  • 발행 : 2008.06.30

초록

낮은 응력 단계에서 모래의 인장강도는 포화도 또는 흡입력에 따라 증가하다. 최대값에 도달한 후 감소한다. 최대인 장강도는 어느 포화도에서든 발생될 수 있다. 본 연구에서는 이러한 습윤 모래의 인장강도를 정확히 예측할 수 있는 이론이 제시되었다. 이 이론은 닫힌 형태의 식으로 pendular, funicular, capillary 세 가지로 구분되는 함수특성곡선 전체 영역을 하나로 통일하여 표현하였다. 낮은 응력 단계에서 내부마찰각 ${\phi}_t$, 공기침투압(air entry pressure)의 역수값 ${\alpha}$, 간극크기범위변수(pore size spectrum parameter) n 등 세 가지 변수가 이론에 사용되었다. 공기침투압 역수값이 최대인장강도를 지배하는 주 요인으로 작용하고, 최대인장강도가 발생될 때 포화도는 오직 간극크기범위변수에만 의존한다.

At low normal stress levels tensile strength of sand varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand is presented. A closed form expression for tensile strength unifies tensile strength characteristics in all three water retention regimes: pendular, funicular, and capillary. Three parameters are employed in the theory; namely, the Internal friction angle (at low normal stress) ${\phi}_t$, the inverse value of the air-entry pressure ${\alpha}$, and the pore size spectrum parameter n. It is shown that the magnitude of peak tensile strength is dominantly controlled by the ${\alpha}$ parameter. The saturation at which peak tensile strength occurs only depends on the pore size spectrum parameter n.

키워드

참고문헌

  1. Allen, A. (2001), "Contaminant landfills: the myth of sustainability", Engineering Geology, Vol.60, pp.3-19 https://doi.org/10.1016/S0013-7952(00)00084-3
  2. Blight, G.E. (1967), "Effective stress evaluation for unsaturated soils", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, SM. 2, pp.125-148
  3. Cho, G.C. and Santamarina, J.C. (2001), "Unsaturated particulate materials: Particle-level studies", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.1, pp.84-96 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(84)
  4. Dallavalle, J.M. (1943), Micrometrics, Pitman, London
  5. Fang, H. Y. and Fernandez (1981), "Determination of tensile strength of soils by unconfined-penetration test", ASTM STP 740, pp.130-144
  6. Fisher, R.A. (1926), "On the capillary forces in an ideal soil: Correction of formula given by W.B. Haines", Journal of Agricultural Science, Vol.16, pp.492-505 https://doi.org/10.1017/S0021859600007838
  7. Ingles, O.G. (1962), "Bonding forces in soils, Part III: A theory of tensile strength for stabilized and naturally coherent soils", Proceedings of the First Conference of the Australian Road Research Board, Vol.1, pp.1025-1047
  8. Kim, T-H. (2001), Moisture-induced tensile strength and cohesion in sand, PhD Dissertation, Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO
  9. Kim, T-H. and Hwang, C. (2003), "Modeling of tensile strength on moist granular earth material at low water content", Engineering Geology, Vol.69, pp.233-244 https://doi.org/10.1016/S0013-7952(02)00284-3
  10. Kim, T-H., Kim, C-K., Jung, S-J., Lee, J-H. (2007), "Tensile strength characteristics of contaminated and compacted sand-bentonite mixtures", Environmental Geology, Vol.52, No.4, pp.653-661 https://doi.org/10.1007/s00254-006-0494-8
  11. Leonards, G. A. and Narain, J. (1963), "Flexibility of clay and cracking of earth dams", Jour. of Soil Mech. and Found. Div., Proc. ASCE, Vol.89, No.SM2, pp.47-98
  12. Lu, N. and Likos, W.J. (2004), Unsaturated Soil Mechanics, Wiley, New York
  13. Lu, N. and Likos, W.J. (2006), "Suction stress characteristic curve for unsaturated soil", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.2, pp.131-142 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  14. Mehrotra, V.P. and Sastry, K.V.S. (1980), "Pendular bond strength between unequal-sized particles", Powder Technology, Vol.25, pp.203-214 https://doi.org/10.1016/0032-5910(80)87031-8
  15. Rumpf, H. (1961), "The strength of granules and agglomerates", In Agglomeration, W.A. Knepper (ed.), Interscience, New York
  16. Schubert, H. (1975), "Tensile strength of agglomerates", Powder Technology, Vol.11, pp.107-119 https://doi.org/10.1016/0032-5910(75)80036-2
  17. Schubert, H. (1982), Kapillarität in Porösen Festsoffsystemen, Springer Verlag, Berlin
  18. Sparks, A.D.W. (1963), "Theoretical considerations in stress equations for partly saturated soils", Proc. $3^{rd}$ Regional Conf. for Africa on Soil Mechanics, Salisbury, Rhodesia, Vol.1, pp.215-218
  19. Spencer, E. (1968), "Effect of tension of stability of embankment", Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.94, No.SM5, pp.1159-1173
  20. Sture, S., Costes, N. C., Batiste, S. N., Lankton, M. R., Alshibli, K. A., Jeremic, B., Swanson, R. A. and Frank, M. (1998), "Mechanics of Granular Materials at Low Effective Stresses", Journal of Aerospace Engineering, ASCE, Vol.11, No.3, pp.67-72
  21. Suklje, L. (1969), "Rheological aspects of soil mechanics", Wiley- Interscience, pp.456-473
  22. van Genuchten, M.T. (1980), "A closed form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, Vol.44, pp.892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x