유사-가능도 최대화를 통한 가우시안 프로세스 기반 음원분리

Gaussian Processes for Source Separation: Pseudo-likelihood Maximization

  • 박선호 (포항공과대학 컴퓨터공학과) ;
  • 최승진 (포항공과대학 컴퓨터공학과)
  • 발행 : 2008.07.15

초록

본 논문에서는 각 음원이 시간적 구조를 가졌을 경우 음원들을 분리해내는 확률적 음원분리 방법을 제안한다. 이를 위해 각 음원의 시간적 구조를 가우시안 프로세스(Gaussian process)로 모델링하고 기존의 음원분리 문제를 유사-가능도 최대화 문제(pseudo-likelihood maximization)로 공식화한다. 본 알고리즘을 통해 얻어진 데이타의 유사-가능도는 정규 분포이며 이는 가우시안 프로세스 회귀방법(Gaussian process regression)을 통해 쉽게 계산이 가능하다. 음원분리의 역혼합 행렬은 경도(gradient) 기반최적화 기법을 통해 데이타의 유사-가능도를 최대화하는 해를 찾음으로써 구해진다. 여러 실험을 통하여 제안 알고리듬이 몇 가지 특정 상황에서 기존의 분리 알고리듬들에 비해 우수한 성능을 보임을 확인 할 수 있다.

In this paper we present a probabilistic method for source separation in the case here each source has a certain temporal structure. We tackle the problem of source separation by maximum pseudo-likelihood estimation, representing the latent function which characterizes the temporal structure of each source by a random process with a Gaussian prior. The resulting pseudo-likelihood of the data is Gaussian, determined by a mixing matrix as well as by the predictive mean and covariance matrix that can easily be computed by Gaussian process (GP) regression. Gradient-based optimization is applied to estimate the demixing matrix through maximizing the log-pseudo-likelihood of the data. umerical experiments confirm the useful behavior of our method, compared to existing source separation methods.

키워드

참고문헌

  1. A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, Inc., 2002
  2. A. Bell and T. Sejnowski, An information maximisation approach to blind separation and blind deconvolution, Neural Computation, Vol.7, pp.1129- 1159, 1995 https://doi.org/10.1162/neco.1995.7.6.1129
  3. A. Hyvarinen and E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Computation, Vol.9, pp. 1483-1492, 1997 https://doi.org/10.1162/neco.1997.9.7.1483
  4. S. Amari and J. F. Cardoso, Blind source separation: Semiparametric statistical approach, IEEE Trans. Signal Processing, Vol.45, pp. 2692-2700, 1997 https://doi.org/10.1109/78.650095
  5. A. Belouchrani, K. Abed-Merain, J. F. Cardoso, and E. Moulines, A blind source separation technique using second order statistics, IEEE Trans. Signal Processing, Vol.45, pp.434-444, Feb. 1997 https://doi.org/10.1109/78.554307
  6. B. Pearlmutter and L. Parra, A context-sensitve generalization of ICA, in Proceedings of the International Conference on Neural Information Processing, pp.151-157, 1996
  7. H. Attias and C. E. Schreiner, Blind source separation and deconvolution: The dynamic component analysis algorithms, Neural Computation, Vol.10, pp.1373-1424, 1998 https://doi.org/10.1162/neco.1998.10.6.1373
  8. Y. M. Cheung, Dual auto-regressive modelling approach to Gaussian process identification' in Proceedings of IEEE International Conference on Multimedia and Expo, 2001, pp.1256-1259
  9. M. Seeger, Gaussian processes for machine learning, International Journal of Neural Systems, Vol. 14, No.2, pp.69-106, 2004 https://doi.org/10.1142/S0129065704001899
  10. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006
  11. S. Park and S. Choi, Source separation with Gaussian process models, in Proceedings of the European Conference on Machine Learning. Warsaw, Poland: Springer, pp.262-273, 2007
  12. S. Park and S. Choi, Gaussian processes for source separation, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, USA, 2008
  13. S. Sundararajan and S. S. Keerthi, Predictive approaches for choosing hyperparameters in Gaussian processes, Neural Computation, Vol.13, pp. 1103-1118, 2001 https://doi.org/10.1162/08997660151134343
  14. J. Besag, Statistical analysis of non-lattice data, The Statistician, Vol.24, No.3, pp.179-195, 1975 https://doi.org/10.2307/2987782
  15. S. Amari, A. Cichocki, and H. H. Yang, A new learning algorithm for blind signal separation, in Advances in Neural Information Processing Systems, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds., Vol.8. MIT Press, pp. 757-763, 1996
  16. L. Csato and M. Opper, Sparse on-line Gaussian processes, Neural Computation, Vol.14, pp. 641-668, 2002 https://doi.org/10.1162/089976602317250933