DOI QR코드

DOI QR Code

Manufacturing and in vitro Characterization of Composite Drug Delivery System (DDS)

복합재 약물전달 시스템의 제작 및 체외 환경 특성 평가

  • 추원식 (서울대학교 기계항공공학부 대학원) ;
  • 정석용 (서울대학교 기계항공공학부 대학원) ;
  • 박정빈 (서울대학교 기계항공공학부 대학원) ;
  • 안성훈 (서울대학교 기계항공공학부, 서울대학교 정밀기계공동연구소) ;
  • 이재훈 (성균관대학교 약학부) ;
  • 지상철 (성균관대학교 약학부)
  • Published : 2008.06.30

Abstract

The Rapid Prototyping (RP) technology has advanced in many application areas. In this research, implantable Drug Delivery System (DDS) was fabricated by an RP system, Nano Composite Deposition System (NCDS). The DDS composite consists of 5-fluorouracil (5-FU), as drug particles, and PLGA85/15 as biodegradable polymer matrix. To have larger surface area, the DDS was fabricated in a scaffold shape, and its degradation was tested in vitro environment. Biocompatible Hydroxyapatite (HA) powders were added to the drug-polymer composite in order to control drug release. Test results showed a possibility of controlled release of scaffold DDS over 50 days.

쾌속 조형(Rapid Prototyping; RP) 기술은 다양한 분야에서 활용되고 있다. 본 연구에서는 RP 기술을 이용한 나노복합재 적층장치(Nano Composite Deposition System, NCDS)를 사용하여 이식 가능한 약물전달시스템을 제작하였다. 약물전달시스템 복합재는 약물 입자로 5-fluorouracil (5-FU)를 사용하였으며, 생분해 고분자 매트릭스로 PLGA85/15를 사용하였다. 제작된 약물전달시스템은 넓은 표면적을 가질 수 있도록 지지체(scaffold) 형상으로 제작되었으며, in vitro 환경에서의 약물방출실험이 수행되었다. 약물방출제어를 위하여 생체적합재료인 수산화아파타이트(Hydroxyapatite, HA)를 약물-고분자 복합재에 첨가하였다. 약 50일간의 방출실험을 통하여 약물방출의 가능성을 보임을 확인하였다.

Keywords

References

  1. J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan,P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das, "Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated Via Selective Laser Sintering," Biomaterils, Vol. 26, 2005, pp. 4817-4827 https://doi.org/10.1016/j.biomaterials.2004.11.057
  2. G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, "Fabrication of PLGA Scaffold Using Soft Lithography and Microsyringe Deposition," Biomaterials, Vol. 24, 2003, pp. 2533-2540 https://doi.org/10.1016/S0142-9612(03)00052-8
  3. C. X. F. Lam, X. M. Mo, S. H. Teoh, and D. W. Hutmacher, "Scaffold Development Using 3D Printing with a Starch-based Polymer," Materials Science and Engineering C, Vol. 20, 2002, pp. 49-56 https://doi.org/10.1016/S0928-4931(02)00012-7
  4. J. T. Jr. Santini, R. Langer, and M. J. A. Cima, "Microfabricated Controlled Release Device," 10th Int. Conf. on Solid-State Sensors and Actuators (Sendai, Japan) Tech. Digest, 1999, pp. 746-747
  5. W. H. Ryu, "Micro-fabrication Technology for Biodegradable Polymers and Its Applications," Ph. D.Thesis, Stanford University, 2005
  6. W. H. Ryu, M. Vyakarnam, R. S. Greco, F. B.Prinz, and R. Fasching, "Fabrication of Multi-Layered Biodegradable Drug Delivery Device Based on Microstructuring of PLGA Polymers," Biomedical Microdevices, Vol. 9, No. 6, 2007, pp. 845-853 https://doi.org/10.1007/s10544-007-9097-8
  7. W. H. Ryu, Z. Huang, F. B. Prinz, S. B. Goodman, and R. Fasching, "Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor," Journal of Controlled Release, Vol. 123, No. 1-2, 2007, pp. 98-105
  8. W. S. Chu, S. G. Kim, S. H. Ahn, W. S. Ha, and S.C. Chi, "Micro/Nano Fabrication Technique in Drug Delivery System (DDS)," Journal of Korean Society for Precision Engineering, Vol. 23, No. 12, 2006, pp. 21-29
  9. W. S. Chu, S. G.Kim, W. K. Jung, H. J. Kim, S. H. Ahn, "Fabrication of Micro Parts using Nano Composite Deposition System," Rapid Prototyping Journal, Vol. 13, No. 5, 2007, pp. 276-283 https://doi.org/10.1108/13552540710824779
  10. W. S. Chu, S. Y.Jeong, S. G. Kim, W. S. Ha, S. C. Chi, and S. H. Ahn, "Fabrication of Biodegradable Drug Delivery System With Controlled Release," Rapid Prototyping Journal, Submitted, 2008
  11. J.B. Kohn, S. Brocchini, K. James, V. Tangpasuthadol, "Copolymer Libraries, Their Production and Monomers There for," WO9952962
  12. N. Kunou, Y. Ogura, T. Yasukawa, H. Kimura, H. Miyamoto,Y. Honda, and Y. Ikada, "Long-term Sustained Release of Ganciclovir from Biodegradable Scleral Implant for the Treatment of Cytomegalovirus Retinitis," Journal of Control Release, Vol. 68, 2000, pp. 263-271 https://doi.org/10.1016/S0168-3659(00)00267-4
  13. K. A. Gross, L. M.Rodriguez-Lorenzo, "Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering," Biomaterials, Vol. 25, 2004, pp. 4955-4962 https://doi.org/10.1016/j.biomaterials.2004.01.046