초록
항공 레이저 스캐닝(ALS) 시스템으로부터 획득한 LiDAR 데이터를 미용하여 3차원 객체 모델링과 지형도 제작을 위해서는 데이터의 기하학적 및 의미적인 분할과 같은 체계적인 데이터 처리가 선행되어야 한다. ALS로 부터 활용 가능한 LiDAR 데이터를 획득하기 위해서는 GPS, INS 및 레이저 스캐너 데이터의 통합이 필수적이다. 본 연구에서는 건물추출과 지붕 구조물 분할을 위해서 LiDAR 데이터를 영상화하여 디지털 영상처리 기법을 적용하였다. 영상화된 데이터를 사용하는 주요 장점 중 하나는 기존의 다양한 영상처리 알고리즘을 사용할 수 있다는 점이다. 격자화 및 정량화를 거치는 영상화 과정에서 원시 LiDAR 데이터가 한정된 밝기값으로 변환되므로 평활화 및 상세 정보의 손실이 발생될 수 있지만. 평활화된 데이터는 표면분할과 모델링에 오히려 적합하다. 건물의 경계선은 윤곽선 추출 연산자를 이용하여 정확하게 추출하였으며, 건물 모양에 적합하도록 규격화하였다. 건물 지붕의 구조물의 분할은 영역확산을 기반으로 수행하였다. 이 결과 다양한 디지털 영상처리 기법을 복합적으로 적용하여 건물추출과 지붕 구조물의 면분할이 가능함을 보여주었다. 또한 지붕의 형태를 재현하기 위한 특성정보 추출에 관한 개념적 방법을 제안하였다. 지붕 데이터를 분할하고 모델링을 위해 통계적 및 기하적 특성을 이용하였으며. 제안한 방법에 의한 시뮬레이션 결과는 지붕면을 분할하고 모델링하는데 가능함을 보여주고 있다.
Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.