Incubation Conditions Affecting Bacteriocin Production of Lactobacillus plantarum K11 Isolated from Dongchimi

동치미에서 분리된 Lactobacillus plantarum K11의 박테리오신 생산에 영향을 미치는 배양 조건

  • Lim, Sung-Mee (Department of Food Science & Technology, Tongmyong University) ;
  • Lee, Gun-Ja (Department of Food Science & Technology, Tongmyong University) ;
  • Park, Sun-Mee (Department of Biological Science, Silla University) ;
  • Im, Dong-Soon (College of Pharmacy and Research Institute for Drug Development, Pusan National University)
  • Published : 2008.06.30

Abstract

The influence of incubation temperature, pH and media components on bacteriocin production by Lactobacillus plantarum K11 were investigated. The highest activity was observed in MRS broth, but no bacteriocin activity was obtained in TSB. The bacteriocin was produced from the exponential growth phase and its activity also reached a maximum in MRS broth, but then dropped after 16 hr because of degradation by extracellular proteolytic enzymes or exhaustion of medium nutrients. The optimal temperature and pH for production of bacteriocin were $37^{\circ}C$ and pH 7.0 in MRS broth, respectively. The addition of 0.5 or 1.0% glucose and $0.5{\sim}1.5%$ lactose to MRS resulted in the increase of the bacteriocin production. With 0.5% NaCl and $K_2HPO_4$, the activities were significantly higher than that of control, respectively. However, increasing nitrogen sources such as beef extract, casein, and tryptone and salts such as $NH_4PO_4$, $MgSO_47H_2O$, and $MnSO_4H_2O$, had detected a negative influence upon the bacteriocin production. Consequently, because the bacteriocin produced by L. plantarum K11 was affected by various incubation conditions, the bacteriocin activity of L. plantarum K11 applied in food as a novel starter will be dependent on environmental factors such as fermentation conditions and food ingredients.

우리의 전통 발효식품인 동치미로부터 E. coli O157에 대한 항균 활성을 나타내는 L. plantarum K11 균주가 생산하는 박테리오신의 활성에 영향을 미치는 배양 조건에 관하여 살펴보았다. 본 균주가 생산하는 박테리오신은 MRS 배지 상에서 가장 높은 활성을 나타내었고 M17, BHI 및 TSB 보다 균의 증식속도도 빠르게 나타났다. 대수기 초기부터 활성이 점점 증가하기 시작하여 정지기 때 최대에 이르렀고 이후에는 급격히 감소하였다 배양온도의 영향으로는 온도가 상승함에 따라 박테리오신의 활성도 증가하여 최대 활성은 $37^{\circ}C$상에서 나타났고 $45^{\circ}C$에서는 오히려 활성이 감소하였다. 배지의 초기 pH 영향을 살펴본 결과 배양 8시간부터 pH 7.0과 8.0에서 활성이 나타나기 시작하여 배양이 진행될수록 pH 7.0에서 최대로 나타났으나, pH 5.0과 9.0에서는 활성이 매우 약하게 나타났다 Glucose 0.5, 1.0%와 lactose $0.5{\sim}1.5%$를 첨가한 경우 대조구에 비해 박테리오신 활성이 2배 이상 증가하였으나, galactose 1.0%, fructose 1.0% 및 maltose 1.5% 이상 첨가 시에는 대조구 보다 오히려 활성이 감소되었다. 질소원은 0.5%의 beef extract나 tryptone 혹은 0.5와 1.0%의 peptone이나 yeast extract에 의해 대조구와 동일한 활성을 나타내었으나, 그 이상의 농도로 첨가했을 때에는 활성이 감소되었다. 또한 NaCl 0.5%와 $K_2HPO_4$ 0.5% 첨가한 경우 박테리오신의 활성이 대조구보다 2배 증가한 반면, NaCl 2.0%, $K_2HPO_4$ 2.0% 이상, $MgSO_4{\cdot}7H_2O$ 1.5% 이상 및 $MnSO_4{\cdot}H_2O$ 1.0% 이상을 첨가했을 때에는 대조구 활성의 50% 이하로 감소하였다.

Keywords

References

  1. Monk, M. and Clowes, R. C.: The regulation of colicin synthesis and colicin factor transfer in Escherichia coli K12. J. Gen. Microbiol., 36, 385-392 (1964) https://doi.org/10.1099/00221287-36-3-385
  2. Tagg, J. R., Dajani, A. S. and Wannamaker, L.W.: Bacteriocins of gram-positive bacteria. Bacteriol. Rev., 40, 722-756 (1976)
  3. Abee, T.: Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol., 129, 1-10 (1995) https://doi.org/10.1111/j.1574-6968.1995.tb07548.x
  4. Bruno, M. E. C. and Montville, T. J.: Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol., 59, 3003-3010 (1993)
  5. Montville, T. J. and Chen, Y.: Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl. Microbiol. Biotechnol., 50, 511-519 (1998) https://doi.org/10.1007/s002530051328
  6. Chen, Y. and Montville, T. J.: Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell death in Listeria monocytogenes Scott A. J. Appl. Bacteriol., 79, 684-690 (1995) https://doi.org/10.1111/j.1365-2672.1995.tb00955.x
  7. Rilla, N., Martinez, B. and Rodriguez, A.: Inhibition of a methicillin-resistant Staphylococcus aureus strain in Afuega'l Pitu cheese by the nisin Z-producing strain Lactococcus lactis subsp. lactis IPLA 729. J. Food Prot., 67, 928-933 (2004) https://doi.org/10.4315/0362-028X-67.5.928
  8. Ivanova, I., Miteva, V., Stefanova, T., Pantev, A., Budakov, I., Danova, S., Moncheva, P., Nikolova, I., Dousset, X., and Boyaval, P.: Characterization of a bacteirocin produced by Streptococcus thermophilus 81. Int. J. Food Microbiol., 21, 147-158 (1998)
  9. Gonzalez, B., Arca, P., Mayo, B. and Suarez, J. E.: Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl. Environ. Microbiol., 60, 2158-2163 (1994)
  10. Li, C., Bai, J., Cai, Z. and Ouyang, F.: Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. Biotechnol., 93, 27-34 (2002) https://doi.org/10.1016/S0168-1656(01)00377-7
  11. Kim, M. H., Kong, Y. J., Baek, H. and Hyun, H. H.: Optimizatin of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5. J. Biotechnol., 121, 54-61 (2006) https://doi.org/10.1016/j.jbiotec.2005.06.022
  12. Todorov, S. D. and Dicks, L. M. T.: Optimization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J. Microbiol., 43, 370-374 (2005)
  13. Lim, S. M. and Im, D. S.: Bactericidal effect of bacteriocin of Lactobacillus plantarum K11 isolated from Dongchimi on Escherichia coli O157. J. Food Hygiene Safety., 22, 151-158 (2007)
  14. Holo, H., Nilssen, O. and Nes, I. F.: Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol., 173, 3879-3887 (1991) https://doi.org/10.1128/jb.173.12.3879-3887.1991
  15. Loubiere, P., Cocaign-Bousquet, M., Matos, J., Goma, G. and Lindley, N.D.: Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. J. Appl. Micriobiol., 82, 95-100 (1997) https://doi.org/10.1111/j.1365-2672.1997.tb03302.x
  16. Lejeune, R., Callewaert, R., Crabbe, K and De Vuyst, L.: Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation. J. Appl. Microbiol., 84, 159-168 (1998) https://doi.org/10.1046/j.1365-2672.1998.00266.x
  17. Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Hwang, J. K. and Pyun, Y. R.: Influence of growth conditions on the production of a nisin-like bateriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotechnol., 95, 225-235 (2002) https://doi.org/10.1016/S0168-1656(02)00010-X
  18. Kim, W. S., Hall, R. J. and Dunn, N. W.: The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl. Microbiol. Biotechnol., 50, 429-433 (1997) https://doi.org/10.1007/s002530051316
  19. Biswas, S. R., Ray, P., Johnson, M. C. and Ray, B.: Influence of growth condition on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol., 57, 1265-1267 (1991)
  20. Yang, R., Johnson, M. C. and Ray, B.: Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol., 58, 3355-3359 (1992)
  21. 이명숙, 장동석, 강지희: Lactobacillus sp. GM7311에 의한 박테리오신의 생산 조건. 한국수산학회지, 30, 834-841 (1997)
  22. Sabia, C., Manicardi, G., Messi, P., Niederhausern, S. and Bondi, M.: Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflauvs IM 416K1 isolated from Italian sausages. Int. J. Food Microbiol., 75, 163-170 (2002) https://doi.org/10.1016/S0168-1605(01)00741-3
  23. Krier, F., Revol-Junelles, A. M. and Germain, P.: Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl. Microbiol. Biotechnol., 50, 359-363 (1998) https://doi.org/10.1007/s002530051304
  24. Matsusaki, H., Endo, N., Sonomoto, K. and Ishizaki, A.: Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Appl. Microbiol. Biotechnol., 45, 36-40 (1996) https://doi.org/10.1007/s002530050645
  25. Maisnier-Patin, S., Forni, E. and Richard, J.: Purification, partial characterization and mode of action of enterococcin EFS2, an antilisterial bacteriocin produced by a strain of Enterococcus faecalis isolated from a cheese. Int. J. Food Microbiol., 30, 255-270 (1996) https://doi.org/10.1016/0168-1605(96)00950-6
  26. Parente, E., Ricciardi, A. and Addario, G.: Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140NWC during batch fermentation. Appl. Microbiol. Biotechnol., 41, 388-394 (1994)
  27. Herranz, C., Martinez, J. M., Rodriguez, J. M., Hernandez, P. E. and Cintas, L. M.: Optimization of enterocin P production by batch fermentation of Enterococcus faecium P13 at constant pH. Appl. Microbiol. Biotechnol., 56, 378-383 (2001) https://doi.org/10.1007/s002530100656
  28. Franz, C. M., Schillinger, U. and Holzapfel, W. H.: Produced and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int. J. Food Microbiol., 29, 255-270 (1996) https://doi.org/10.1016/0168-1605(95)00036-4
  29. 곽규숙, 구재관, 배경미, 전홍기: 김치에서 분리한 Lactococcus sp. J-105가 생산하는 Bacteriocin의 특성. 생명과학회지, 9, 111-120 (1999)
  30. De Vuyst, L.: Nutritional factors affecting nisin production by Lactococcus lactis subsp. lactis NIZO22186 in a synthetic medium. J. Appl. Bacteriol., 78, 28-33 (1995) https://doi.org/10.1111/j.1365-2672.1995.tb01669.x
  31. Audisio, M. C., Oliver, G. and Apella, M. C.: Effect of different complex carbon sources on growth and bacteriocin synthesis of Enterococcus faecium. Int. J. Food Microbiol., 63, 235-241 (2001) https://doi.org/10.1016/S0168-1605(00)00429-3
  32. Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., and Storro, I.: Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biotechnol., 53, 159-166 (2000) https://doi.org/10.1007/s002530050003
  33. Sanni, A. I., Onilude, A. A., Ogunbanwo, S. T. and Simth, S. I.: Antagonistic activity of bacteriocin produced by Lactobacillus species from ogi, an indigenous fermented food. J. Basic Microbiol., 39, 189-195 (1999) https://doi.org/10.1002/(SICI)1521-4028(199906)39:3<189::AID-JOBM189>3.0.CO;2-R
  34. De Vuyst, L. and Vandamme, E. J.: Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentation. J. Gen. Microbiol., 138, 571-578 (1992) https://doi.org/10.1099/00221287-138-3-571
  35. Parente, E. and Ricciardi, A.: Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol., 52, 628-638 (1999) https://doi.org/10.1007/s002530051570
  36. Kim, W. S., Hall, R. J. and Dunn, N. W.: The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl. Microbiol. Biotechnol., 48, 449-453 (1997) https://doi.org/10.1007/s002530051078
  37. Ganzle, M. G., Weber, S. and Hammes, W. P.: Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol., 46, 207-217 (1999) https://doi.org/10.1016/S0168-1605(98)00205-0
  38. Beg, Q. K., Saxena, R. K. and Gupta, R.: De-repression and subsequent induction of protease synthesis by Bacillus mejavensis under fed-batch operations. Process Biochem., 37, 1103-1109 (2002) https://doi.org/10.1016/S0032-9592(01)00320-X
  39. Crandall, A. D. and Montville, T. J.: Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ, Microbiol., 64, 231-237 (1998)
  40. De Vuyst, L. and Vandamme, E. J.: Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Appl. Microbiol. Biotechnol., 40, 17-22 (1993) https://doi.org/10.1007/BF00170422
  41. Bizani, D. and Brandelli, A.: Influence of media and temperature on bacteriocin production by Bacillus cereus 8A during batch cultivation. Appl. Microbiol. Biotechnol., 65, 158-162 (2004)
  42. Carolissen-Mackay, V., Arendse, G. and Hastings, J. W.: Purification of bacteriocin of lactic acid bacteria: problems and pointers. Int. J. Food Microbiol., 34, 1-16 (1997) https://doi.org/10.1016/S0168-1605(96)01167-1