팔당호 플랑크톤 군집의 탄소생물량 동태

Carbon Dynamics of Plankton Communities in Paldang Reservoir

  • 노성유 (한양대학교 분자생명환경과학과) ;
  • 한명수 (한양대학교 생명과학과)
  • Noh, Seong-You (Department of Molecular and Environmental Bioscience, Hanyang University) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University)
  • 발행 : 2008.06.30

초록

본 연구는 팔당호의 효과적인 호소관리를 위하여 미세 먹이망의 구조와 기능을 이해하고자 경안천(정점 K), 팔당댐 (정점 P)그리고 남 북한강 합류부(정점 M)에서 2005년 3월부터 12월까지 매월 1회씩 환경 요인과 미소 생물요인의 생물량을 조사하였다. 조사기간 동안 DOC는 $3{\sim}5$월 그리고 11월에 높은 값을 보였다. 영양염류는 다른 2개 정점보다 상대적으로 정점 K에서 높은 수치를 보였다. 인산염과 규산염은 여름철 집중강우기 이후에 3개 정점에서 점진적으로 증가하였으나, 9월 이후에는 감소하는 양상을 나타내었다. Chl-$\alpha$의 변화는 3개 정점에서 4월과 11월에 매우 높은 값을 보였다. 박테리아와 HNF의 탄소량은 3월, 5월 그리고 8월에 높은 값을 보였으나, 섬모충플랑크톤의 월별탄소량의 변화는 큰 변화를 보이지 않았다. 그럼에도 불구하고 섬모충플랑크톤(P<0.001)과 HNF(P<0.05)의 탄소량 변화는 박테리아 탄소량의 변화와 높은 상관관계를 보였다. 이 시기에는 Tintinnopsis cratera, Didinium sp., Vorticella sp., Paramecium sp. 그리고 Strombidium sp.가 우점종으로 밝혀졌다. 식물플랑크톤 우점종은 봄철, 여름철 그리고 가을철에 Stephanodiscus hantzschii와 Cyclotella meneghiniana가 3개 정점에서 모두 우점하였다. 그러나 가을철에는 정점 P와 정점 M에서 Aulacoseira granulata가 95%이상으로 극히 높게 우점하였다. 동물플랑크톤의 탄소량은 6월에 정점 P와 정점 M에서 가장 높은 생물량을 기록하였으며, 8월, 10월 그리고 11월에도 3개 정점에서 상대적으로 높은 생물량이 관찰되었다. 동물플랑크톤은 6월에 정점 P와 정점 M에서 Diaphanosoma brachyurum이 제1우점종으로 밝혀졌으며, 가을철인 10월과 11월에는 3개 정점에서 Bosmina longirostris가 우점하였다. Bosmina longirostris는 Aulacoseira granulata와 Stephanodiscus hantzschii를 먹이로 공급하였을 때 높은 성장률(A. granulata: $0.17\;d^{-1}$, S. hantzschii: $0.14^{-1}\;d^{-1}$)과 섭식률 (A. granulata: 1.93 preys $d^{-1}$, S. hantzschii: 1.63 preys $d^{-1}$)을 보였다. 이상의 결과로, 박테리아와 식물플랑크톤은 주요 먹이원으로서, 봄철과 여름철은 bacteria를 먹이로 하는 microbial food chain이 주요기능으로, 가을철에는 식물플랑크톤을 먹이로 하는 grazing food chain이 중요한 기능을 갖는 것으로 시사한다.

In an effort to identify structure and function of microbial loop in Paldang reservoir, we monitored environmental and biological factors at Kyungan stream (station K), Paldang dam (station P) and the confluence of North and South Han River (station M) from March to December, 2005. DOC concentration was higher in March to May and November than the others. Nutrient concentration in station K detected relatively higher than that of two stations. Both of phosphate and silicate gradually increased at all stations until September, after then decreased. The highest Chl-$\alpha$ concentration was observed at all stations in April, and November. The carbon biomass of bacteria and HNF were relatively higher in March, May and August than the others, whereas that of the ciliate showed no significant difference in monthly fluctuation. Nevertheless, the significant relationships revealed between ciliate (P<0.001) and HNF (P<0.05) and bacterial density. Tintinnopsis cratera, Didinium sp., Vorticella sp., Paramecium sp. and Strombidium sp. were dominant species in ciliate community. The dominant species of phytoplankton were Stephanodiscus hantzschii and Cyclotella meneghiniana at almost stations in Spring, Summer and Autumn. However, Aulacoseira granulata accounted for >95% of phytoplankton biomass at station P and M in Autumn. The carbon biomass of zooplankton was highest at station P and M in June, and relatively higher biomass observed at all stations in August, October and November. Diaphanosoma brachyurum and Bosmina longirostris were dominant in stations P and M of June and in all stations of October and November, respectively. The maximum growth (A. granulata: $0.17\;d^{-1}$, S. hantzschii: $0.14\;d^{-1}$) and grazing rate (A. granulata: 1.93 preys $d^{-1}$, S. hantzschii: 1.63 preys $d^{-1}$) of Bosmina longirostris revealed in algal preys as Aulacoseira granulata and Stephanodiscus hantzschii. In conclusion, these results suggest that bacteria and phytoplankton can play the most crucial source as prey within microbial food chain in Spring and Summer and grazing food chain in Autumn, respectively.

키워드

참고문헌

  1. 김동원, 이원재. 1993. 해양미생물과 식물플랑크톤의 상호관계 1. 수영만의 해양세균과 식물플랑크톤 우점종 간의 상호관 계. 한국수산학회지 26: 446-457
  2. 김상훈, 박혜경, 변명섭, 전명진, 정동일. 2003. 팔당호 동물플랑 크톤 시∙공간적 분포. 한국물환경학회.대한상하수도학 회 공동춘계학술발표 논문집, p. 289-292
  3. 김영옥, 최현우, 장민철, 장풍국, 이원제, 신경순, 장 만. 2007. 부유생물을 이용한 해양생태계 건강성 평가. 한국해양연구 원 발간학술지 29: 327-337
  4. 문은영, 김영옥, 김백호, 공동수, 한명수. 2004. 팔당호 섬모충 플랑크톤의 분류 및 생태학적 연구. 한국육수학회지 37: 149-179
  5. 박혜경, 정원화. 2003. 팔당호의 장기간 식물플랑크톤 발생 추 이. 한국물환경학회지 19: 673-684
  6. 손주연, 황순진, 공동수. 2006. 팔당호와 경안천에서 박테리아 와 원생동물의 생물량과 세포크기의 시.공간적 분포. 한국육수학회지 39: 378-389
  7. 신재기. 1998. 낙동강 부영양에 따른 담수조류의 생태학적 연 구. 인제대학교 대학원 박사학위논문, 202 p.
  8. 양은진, 최중기, 유만호, 조병철, 최동한. 2005. 강화도 펄 갯벌 에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압. 한국해양학회지 10: 19-30
  9. 엄성화, 황순진. 2006. 팔당호 생태계에서 동물플랑크톤과 식 물플랑크톤의 섭식관계. 한국육수학회지 39: 390-401
  10. 유광일, 임병진. 1990. 한강 하류역의 식물플랑크톤 군집과 수 질오염지표에 대하여. 한국육수학회지 23: 267-277
  11. 이진환, 장 만. 1997. 한강하류의 환경학적 연구 II. 식물플랑크톤의 동태. 한국육수학회지 30: 193-202
  12. 이욱세, 한명수. 2004. 체류시간이 서로 다른 부영양 수계에서 플랑크톤군집의 생태학적 특성. 한국육수학회지 37: 263- 271
  13. 정승원, 이진환, 유종수. 2003. 한강 하류의 환경학적 연구 V. 식물 플랑크톤 군집 대발생의 특징. Algae 18: 255-262 https://doi.org/10.4490/ALGAE.2003.18.4.255
  14. 정승원, 이진환, 허회권. 2004. 한강 하류의 환경학적 연구 IV. 부영양 요인의 통계학적 해석. 한국육수학회지 37: 78-86
  15. 한명수, 어윤열, 유재근, 유광일, 최영길. 1995. 팔당호의 생태학 적 연구 2. 식물플랑크톤의 군집 구조의 변화. 한국육수학 회지 28: 335-344
  16. 한명수, 이동석, 유근재, 박용철, 유광일. 1999. 팔당호의 생태학 적 연구 3. 식물플랑크톤의 일차생산력과 광합성 모델 parameters. 한국육수학회지 32: 8-15
  17. 한명수, 홍성수, 어윤열. 2002. 팔당호의 생태학적 연구 4. 경안 천 하류의 영양염 및 입자태 유기물 거동과 식물플랑크톤 의 천이. 한국육수학회지 35: 1-9
  18. Anderson, A. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814 https://doi.org/10.4319/lo.1991.36.4.0807
  19. APHA, AWWA, WPCF. 1995. Standard methods for the examination of water and wastewater, 19th ed. APHA, Washington D. C. 1100p.
  20. Auer, B., U. Elzer and H. Arndt. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J. Plankton Res. 26: 697-709 https://doi.org/10.1093/plankt/fbh058
  21. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 126: 97-102 https://doi.org/10.3354/meps126097
  22. Baines, S.B. and M.L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater system. Limnol. Oceanogr. 36: 1078-1090 https://doi.org/10.4319/lo.1991.36.6.1078
  23. Beakes, Canter and Jaworski. 1988. A century of Mycology. Cambridge University Press, 166 p.
  24. Beaver, J.R. and T.L. Crisman. 1982. The trophic response of ciliated of protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253 https://doi.org/10.4319/lo.1982.27.2.0246
  25. Berninger, U.G., B.J. Finlay and P. Kuuppo-Leinikki. 1991. Protozoan control of bacterial abundances in freshwater. Limnol. Oceanogr. 34: 139-147
  26. Bloem, J. and G.M.B. Bar. 1989. Bacterial activity and protozoan grazing potential in a statified lake. Limnol. Oceanogr. 34: 291-309
  27. Caron, D.A. 1983. Technique for enumeration of heterotrophic and photortophic nanoplankton, using epifluorescent microscopy, and comparison with other procedures. Appl. Environ. Microbial. 46: 491-498
  28. Caron, D.A., H.G. Dam, P. Kremer, E.J. Lessard, L.P. Madin, T.C. Malone, Q.J.M. Napp, E.R. Peele, M.R. Roman and M.J. Youngbluth. 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res. 42: 943-972 https://doi.org/10.1016/0967-0637(95)00027-4
  29. Carrick, H.J., G.L. Fahnenstiel and W.D. Taylor. 1992. Growth and production of plankton protozoa in Lake Michigan: in situ versus in vitro comparison and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235 https://doi.org/10.4319/lo.1992.37.6.1221
  30. Cho, B.C., S.C. Na and D.H. Choi. 2000. Active ingestion of fluorescently labeled bacteria by mesopelagic heterotrophic nanoflagellates in the East sea, Korea. Mar. Ecol. Prog. Ser. 206: 23-32 https://doi.org/10.3354/meps206023
  31. Choi, D.H., J.S. Park, C.Y. Hwang, S.H. Huh and B.C. Cho. 2002. Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters. Mar. Ecol. Prog. Ser. 229: 1-10 https://doi.org/10.3354/meps229001
  32. Cole, J.J., G.E. Likens and D.L. Strayer. 1982. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080-1090 https://doi.org/10.4319/lo.1982.27.6.1080
  33. Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer. 1985. Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390 https://doi.org/10.1139/f85-173
  34. Dawidowicz, P. 1990. Effectiveness of phytoplankton control by large-bodied and small-bodued zoopalnkton. Hydrobiologia. 200/201: 43-47 https://doi.org/10.1007/BF02530327
  35. Downing, J.A. and F.H.R. Rigler. 1984. A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell Scientific Publications, p. 247- 249
  36. Dumont, H.J., L.V.D. Velde and S. Dumont. 1975. The dry weight estimate of biomass in a selecrion of cladocera, copepoda, and rotifera from the plankton, periphyton, and benthos of contimental waters. Oceclogia. 91: 75- 97
  37. Frost, B.W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17: 805-815 https://doi.org/10.4319/lo.1972.17.6.0805
  38. Ha, K., M.H. Jang and G.J. Joo. 2003. Winter Stephanodiscus bloom development in the Nakdong River regulated by an estuary dam and tributaries. Hydrobiologia. 506-509: 221-227 https://doi.org/10.1023/B:HYDR.0000008564.64010.4c
  39. Hama, T. and N. Handa. 1980. Molecular weight distribution and characterization of dissolved organic matter from lake waters. Arch. Hydrobiologia. 90: 106-120
  40. Heinbokel, J.F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177-189 https://doi.org/10.1007/BF00395638
  41. Hong, S.S., S.W. Bang, Y.O. Kim and M.S. Han. 2002. Effents of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Pal'tang Reservoir, Korea. J. Fresh. Ecol. 17: 507-520 https://doi.org/10.1080/02705060.2002.9663929
  42. Hwang, S.J. 1995. Carbon dynamics of plankton communities in nearshore and offshore Lake Erie: The significance of the microbial loop for higher trophic levels. PhD dissertation, Kent State University, Kent, OH
  43. Hwang, S.J. and R.T. Heath. 1997. The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. J. Plankton Res. 19: 491-518 https://doi.org/10.1093/plankt/19.4.491
  44. Kim, B.H. and S.O. Hwang. 2004. The structure of the plankton community and the cyanobacterial bloom during the rainy season in mesoeutrophic lake (Lake Juam), Korea. K. J. Sanitation. 19: 51-59
  45. Kim, B.H., W.S. Lee, Y.O. Kim, H.O. Lee and M.S. Han. 2005. Relationship between akinete germination and vegetative population of Anabaena flos-aquae (Nostocales, Cyanobacteria) in Seokchon reservoir (Seoul, Korea). Arch. Hydrobiologia. 163: 49-64 https://doi.org/10.1127/0003-9136/2005/0163-0049
  46. Kim, H.W., K.H. Chang, K.S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the river-reservoir hybrid system (Nakdong River, Korea): Its role in cintrolling the phytoplankton biomass. Kor. J. Limnol. 36: 420-426
  47. Lampert, W. 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 195-208 https://doi.org/10.4319/lo.1978.23.2.0195
  48. Laws, E.A., D.G. Redalje, L.W. Haas, P.K. Beinfang and R. W. Eppley. 1984. High phytoplankton growth and production rates in oligotrophic hawaiian ciastal waters. Limnol. Oceanogr. 29: 1161-1169 https://doi.org/10.4319/lo.1984.29.6.1161
  49. Lees, J.J. and J.A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298- 1303
  50. McManus, G.B. and J.A. Fuhrmann. 1988. Control of marine bacterioplankton population: measurement and significance of grazing. Hydrobiologia. 159: 51-62 https://doi.org/10.1007/BF00007367
  51. Montagnes, D.J.S. and D.H. Lynn. 1987. A quantitative Protorgol Stain (QPS) for ciliates: method description and test of its quantitative mature. Mar. Microb. Food Webs. 2: 83-93
  52. Nagata, T. 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504-517 https://doi.org/10.4319/lo.1988.33.4.0504
  53. Nemeth, A., J. Paolini and R. Herrera. 1982. Carbon transport in the Orinoco River: Prelimnary results, p. 357- 364. In: SCOPE/UNEP Transport of carbon and Minerals in Major World Rivers, 52 (Degens, E.T. ed.). University of Hamburg, Hamburg
  54. Ochiai, M. and T. Hanya. 1980. Vertical distribution of monosaccharides in lake water. Hydrobiologia. 70: 165- 169 https://doi.org/10.1007/BF00015502
  55. Pace, M.L. and J.D. Orcutt, Jr. 1981. The relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822-830 https://doi.org/10.4319/lo.1981.26.5.0822
  56. Pace, M.L. 1982. Planktonic ciliates: their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can. J. Fish. Aquat. Sci. 39: 1106- 1116 https://doi.org/10.1139/f82-148
  57. Pirjo, K., A. Riitta, H. Seija, K. Harri, K. Jorma and P. Riitta. 1994. Trophic interactions and carbon flow between picoplankton and protozoa in pelagic enclosures manipulated with nutrients and a top predator. Mar. Ecol. Prog. Ser. 107: 89-102 https://doi.org/10.3354/meps107089
  58. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  59. Sheldon, R.W., P. Nival and F. Rassoulzadegan. 1986. An experimental investigation of a flagellate-ciliate-copepod chain with some observation relevant to the linear biomass bypothesis. Limnol. Oceanogr. 31: 184-188 https://doi.org/10.4319/lo.1986.31.1.0184
  60. Sherr, E. and B. Sherr. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33: 1225-1227 https://doi.org/10.4319/lo.1988.33.5.1225
  61. Simon, M. and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201-213 https://doi.org/10.3354/meps051201
  62. Skibbe, O. 1994. An improved quantitative protargol stain for ciliates and other planktonc protists. Arch. Hydrobiologia. 130: 339-347
  63. Soreide, J.E., H. Haakon, L.C. Michael, F.P. Stig and E.N. Hegseth. 2006. Seasonal food web structures and sympagic- pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanogr. 71: 59-87 https://doi.org/10.1016/j.pocean.2006.06.001
  64. Takehiko, F., J.C. Park, A. Imai and K. Matsushige. 1996. Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin. Aquatic Sciences. 58
  65. Takeo, H. and N. Handa. 1983. The seasonal variation of organic constiuents in a eutrophic lake, Lake Suwa, Japan. Part II. Dissolved organic matter. Arch. Hydrobiologia. 98: 443-462
  66. Thurman, E.M. 1985. Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands
  67. Ventelä, A.M., K. Wiackowski, M. Moilanen, V. Saarikari, K. Vuorio and J. Sarvala. 2002. The effect of small zooplankton on the microbial loop and edible algae during a cyanobacterial bloom. Freshwater Biol. 47: 1807- 1819 https://doi.org/10.1046/j.1365-2427.2002.00924.x
  68. Weisse, T., H. Müller, R.M. Pinto-Coelho, A. Schweizer, D. Springmann and G. Baldringer. 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol. Oceanogr. 35: 781-794 https://doi.org/10.4319/lo.1990.35.4.0781
  69. Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus topdown control. J. Plankton Res. 13: 167-185 https://doi.org/10.1093/plankt/13.1.167
  70. Wetzel, R.G. 1983. Limnology. Saunders College Publishing, p. 487-518
  71. Wetzel, R.G. and G.E. Likens. 1991. Limnological analyses. Springer-Verlag, New York
  72. Wylie, J.L. and D.J. Currie. 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708-728 https://doi.org/10.4319/lo.1991.36.4.0708