Effect of Grinding Method and Grinding Rate on the Dry Beneficiation of Kaolin Mineral

분쇄방식 및 분쇄율이 고령토 광물의 건식 정제에 미치는 영향

  • Kim, Sang-Bae (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Young-Yoon (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Sung-Baek (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Wan-Tae (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources)
  • 김상배 (한국지질자원연구원 자원활용소재연구부) ;
  • 최영윤 (한국지질자원연구원 자원활용소재연구부) ;
  • 조성백 (한국지질자원연구원 자원활용소재연구부) ;
  • 김완태 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2008.06.30

Abstract

The characteristics of beneficiating kaolin mineral by liberation (selective grinding) and air classification have been investigated, comparing the grinding rates of ball mill and impact mill. The ore was ground using a ball mill and a impact mill to evaluate the grindability of the two grinding methods based on the constant production amount of fine particles in size less than 325 mesh. Then, the fine product was further separated into two fractions using an air-classifier and each fraction was chemically analyzed to compare the beneficiation efficiency of the two grinding methods. The chemical grade of kaolin mineral decreased as increasing the grinding rate of both the mills. particularly in the case of ball mill because of overgrinding impurities such as quartz and feldspar. In the case of the ball milling, the fine fraction less than 325 mesh was air-classified at a cutting point of $43\;{\mu}m$. The production rate of the air-classified concentrate was found to be 66.2 wt%, removing 5.3% of $Fe_2O_3$ and 34.6% of CaO. Under the same conditions mentioned above with the impact mill, the production rate of the air-classified concentrate was 64.4 wt%, removing 34.2% of $Fe_2O_3$, 67.6% of CaO and 25.0% of $TiO_2$. Therefore, our results indicate that impact mill is superior to ball mill in terms of impurity removal.

볼 밀과 임팩트 밀의 분쇄율에 따른 단체분리(선택적 분쇄)와 공기 분급에 의한 고령토 광물의 성세특성을 조사하였다. 원광석을 볼 밀과 임팩트 밀로 분쇄하여 325 mesh 이하 미립자의 생성율을 유사하게 조절하였으며 미립자에 대한 화학성분을 분석함으로써 선택적 분쇄 특성을 조사하였다. 분쇄된 시료는 공기 분급기를 사용하여 미립자와 굵은 입자로 분리하고 각 산물에 대한 화학조성분석을 통하여 분쇄 방식에 따른 정제효과를 비교하였다. 볼 밀과 임팩트 밀 모두 분쇄율이 높아질수록 미립자의 고령토 품위는 낮아지는 경향을 나타내었다. 특히 볼 밀의 경우에서 석영, 장석과 같은 불순광물의 혼입으로 인해 미립자의 불순물 함량이 높아짐을 알 수 있었다. 볼 밀의 경우 공기 분급기의 분급점을 $43\;{\mu}m$로 하면 정광의 생산율은 66.2 wt%이었으며 철성분 제거율은 5.3%, 칼슘성분 제거율은 34.6%로 나타났다. 반면 임팩트 밀을 사용하여 동일한 조건으로 분쇄 후 분급한 산물의 정광 생산율은 64.4 wt%이며 철성분 제거율은 34.2%, 칼슘성분 제거율은 67.6%, 티탄성분 제거율은 25.0%를 나타내어 임팩트 밀의 경우가 불순물의 제거에 우수한 결과를 보였다.

Keywords

References

  1. 김상배, 조성백, 김완태, 윤성대 (2005) 선택분쇄 및 공기 분급에 의한 일라이트의 정제기술 연구, 한국광물학회, 18(1), 19-31
  2. 산업자원부, 2006년도 광산물 수급현황
  3. 손연수, 이용선 외 (1985) 고령토의 종합활용 기술개발, 과학기술처, 28-33
  4. 이수정, 서용재 (2008) 카올리나이트와 혼합된 할로이사이트의 정량분석, KIGAM Bulletin, 12(1), 63-76
  5. Greene, E.W. and Duke, J.B. (1961) Selective froth flotation of ultrafine minerals of slimes, Trans. SME/AIME, 223, 191-204
  6. Grimshaw, R.W. (1971) Physics and Chemistry of clay, 4th ed., Ernest Bern, London, ISBN : 0510-47701-7
  7. Mako. E., Senkar. Z., Kristof. J., and Vagvolgyi. V (2006) Surface Midification of Mechanochemically. Activated Kaolinites by Selective Leaching, J. of Colloid and Interface Science, 294, 362-370 https://doi.org/10.1016/j.jcis.2005.07.033
  8. Malden, P. and Meads, R. (1967) Substitution by iron in kaoline, Nature (London), 215, 844-846
  9. Maurya, C.B. and Dixit, S.G. (1990) Effect of pH on the high gradient magnetic separations of kaolin clays, Int. J. Mine. Process, 28(4), 190-207
  10. Saikia, N.J. et al. (2003) Characterization, beneficiation and utilization of a kaoline clay from Assam, India, Applied Clay Science, 24, 93-103 https://doi.org/10.1016/S0169-1317(03)00151-0
  11. Otsuka, N. and Hayashi, T. (1982) Application of sedimentation process by D. C. field to refinement of ceramic raw materials, NENDO KAGAKU, 22(4), 192-201
  12. Shoumkov, S., Dimitrov, Z., and Brakalov, L. (1987) High gradient magnetic treatment of kaolin, Interceram, 36(6), 26-28
  13. Thompson, T.D. (1984) Utilization of Ion- Exchange Resin in the Processing of Kaoline, U. S. Pat No : 4451440
  14. Tsunematsu, K. et al. (1989) Dispersion and coagulation properties of IRIKI kaolin clay and its purification by high gradient magnetic separation, Shigen to Sozai, 105(12), 939-943 https://doi.org/10.2473/shigentosozai.105.939
  15. Veglio, F., Passariollo, B., Yoro, L., and Marabini, A.M. (1996) Development of a bleaching process for a kaolin of industrial interest by oxalic, ascrobic and sulphuric acids: preliminary study using statistical methods of experimental design. Ind. Eng. Chem. Res., 35, 1680-1687 https://doi.org/10.1021/ie950427s
  16. Yamanaka, S. et al. (1986) Preparation and properties of titania pillared clay, Master. Chem. Phys. 17(1-2) 87-101