일변량 공간 연관성 측도의 통계적 검정을 위한 일반화된 고차 적률 추출 절차: 정규성 가정의 경우

A Generalized Procedure to Extract Higher Order Moments of Univariate Spatial Association Measures for Statistical Testing under the Normality Assumption

  • 이상일 (서울대학교 사범대학 지리교육학과)
  • Lee, Sang-Il (Department of Geography Education, Seoul National University)
  • 발행 : 2008.06.30

초록

이 논문의 주요 목적은 정규성 가정 하에 일변량 공간 연관성 측도의 첫 번째 네 적률을 구해내는 일반화된 추출 절차를 정식화하고, 그것을 바탕으로 각 측도의 가설 검정을 위해 정규근사가 갖는 가능성과 한계를 평가하는 것이다. 중요 연구 결과는 다음과 같다. 첫째, 이전의 연구에 기반함으로써, 정규성 가정 하에 전역적 측도와 국지적 측도에 모두 적용될 수 있는 일반화된 적률 추출절차가 도출되었다. 개별 공간 연관성 측도를 위한 필수적인 메트릭스가 적절히 정의되었을 때, 일반화된 유의성 검정 방법은 각 공간 연관성 측도의 기대값과 분산은 물론 첨도와 왜도를 효과적으로 산출하였다. 둘째, 첫 번째 두 적률에 근거한 정규근사 방법은 전역적 통계량에 대해서는 유효한 것으로 판명되었지만, 국지적 통계량에 대해서는 매우 높은 왜도와 첨도로 말미암아 그 유효성이 현저히 떨어지는 것으로 드러났다.

The main objective of this paper is to formulate a generalized procedure to extract the first four moments of univariate spatial association measures for statistical testing under the normality assumption and to evaluate the viability of hypothesis testing based on the normal approximation for each of the spatial association measures. The main results are as follows. First, predicated on the previous works, a generalized procedure under the normality assumption was derived for both global and local measures. When necessary matrices are appropriately defined for each of the measures, the generalized procedure effectively yields not only expectation and variance but skewness and kurtosis. Second, the normal approximation based on the first two moments for the global measures fumed out to be acceptable, while the notion did not appear to hold to the same extent for their local counterparts mainly due to the large magnitude of skewness and kurtosis.

키워드

참고문헌

  1. Anselin, L., 1988, Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, Boston
  2. Anselin, L., 1995, Local indicators of spatial association: LISA, Geographical Analysis, 27(2), 93-115 https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  3. Boots, B.N. and Tiefelsdorf, M., 2000, Global and local spatial autocorrelation in bounded regular tessellations, Journal of Geographical Systems, 2(4), 319-348 https://doi.org/10.1007/PL00011461
  4. Cliff, A.D. and Ord, J.K., 1981, Spatial Processes: Models and Applications, Pion Limited, London
  5. Costanzo, M., Hubert, L.J., and Golledge, R.G., 1983, A higher moment for spatial statistics, Geographical Analysis, 15(4), 347-351 https://doi.org/10.1111/j.1538-4632.1983.tb00793.x
  6. Durbin, J. and Watson, G.S., 1950, Testing for serial correlation in least square regression. I, Biometrika, 37(3/4), 409-428
  7. Durbin, J. and Watson, G.S., 1951, Testing for serial correlation in least square regression. II, Biometrika, 38(1/2), 159-178 https://doi.org/10.1093/biomet/38.1-2.159
  8. Durbin, J. and Watson, G.S., 1971, Testing for serial correlation in least squares regression. III, Biometrika, 58(1), 1-19
  9. Henshaw, R.C., Jr., 1966, Testing single-equation least squares regression models for autocorrelated disturbances, Econometrica, 34(3), 646-660 https://doi.org/10.2307/1909774
  10. Henshaw, R.C., Jr., 1968, Errata: Testing single-equation least squares regression models for autocorrelated disturbances, Econometrica, 36(3/4), 626
  11. Hepple, L.W., 1998, Exact testing for spatial autocorrelation among regression residuals, Environment and Planning A, 30(1), 85-107 https://doi.org/10.1068/a300085
  12. Hubert, L.J., 1984, Statistical applications of linear assignment, Psychometrika, 49(4), 449-473 https://doi.org/10.1007/BF02302585
  13. Hubert, L.J., 1987, Assignment Methods in Combinatorial Data Analysis, Marcel Dekker, New York
  14. Lee, S.-I., 2001, Developing a bivariate spatial association measure: An Integration of Pearson's r and Moran's I, Journal of Geographical Systems, 3(4), 369-385 https://doi.org/10.1007/s101090100064
  15. Lee, S.-I., 2004, A generalized significance testing method for global measures of spatial association: An extension of the Mantel test, Environment and Planning A, 36(9), 1687-1703 https://doi.org/10.1068/a34143
  16. Lee, S.-I., 2008, A generalized randomization approach to local measures of spatial association, Geographical Analysis, forthcoming
  17. Leung, Y., Mei, C.-L., and Zhang, W.-X., 2003, Statistical test for local patterns of spatial association, Environment and Planning A, 35(4), 725-744 https://doi.org/10.1068/a3550
  18. Mielke, P.W., 1979, On asymptotic non-normality of null distributions of MRPP statistics, Communications in Statistics: Theory and Methods, A8(15) 1541-1550; 1981, Erratum a10(17) 1795; 1982, Erratum 11(7) 847
  19. Rogerson, P.A., 2006, Statistical Methods for Geography: A Student's Guide, 2nd Edition, Sage Publications, London
  20. Siemiatycki, J., 1978, Mantel's space-time clustering statistic: computing higher moments and a composition of various data transforms, Journal of Statistical Computation and Simulation, 7(1), 13-31 https://doi.org/10.1080/00949657808810206
  21. Tiefelsdorf, M., 1998, Some practical applications of Moran's I's exact conditional distribution, Papers in Regional Science, 77(2), 101-129 https://doi.org/10.1111/j.1435-5597.1998.tb00710.x
  22. Tiefelsdorf, M., 2000, Modelling Spatial Processes: The Identification and Analysis of Spatial Relationships in Regression Residuals by Means of Moran's I, Springer, Berlin
  23. Tiefelsdorf, M., 2002, The saddlepoint approximation of Moran's I's and local Moran's Ii's reference distributions and their numerical evaluation, Geographical Analysis, 34(2), 187-206 https://doi.org/10.1353/geo.2002.0018
  24. Tiefelsdorf, M. and Boots, B., 1995, The exact distribution of Moran's I, Environment and Planning A, 27(6), 985-999 https://doi.org/10.1068/a270985
  25. Tiefelsdorf, M., Griffith, D.A., and Boots, B., 1999, A variance-stabilizing coding scheme for spatial link matrices, Environment and Planning A, 31(1), 165-180 https://doi.org/10.1068/a310165
  26. Upton, G.J.G. and Fingleton, B., 1985, Spatial Data Analysis by Example: Volume 1 Point Pattern and Quantitative Data, John Wiley & Sons, New York