A Spatial Statistical Method for Exploring Hotspots of House Price Volatility

부동산 가격변동 한스팟 탐색을 위한 공간통계기법

  • Sohn, Hak-Gi (Korea Research Institute for Human and Settlements) ;
  • Park, Key-Ho (Department of Geography, Seoul National University)
  • Published : 2008.06.30

Abstract

The purpose of this paper is to develop a method for exploring hotspot patterns of house price volatility where there is a high fluctuation in price and homogeneity of direction of price volatility. These patterns are formed when the majority of householders in an area show an adaptive tendency in their decision making. This paper suggests a method that consists of two analytical parts. The first part uses spatial scan statistics to detect spatial clusters of houses with a positive range of price volatility. The second part utilizes local Moran's I to evaluate the homogeneity of direction of price volatility within each cluster. The method is applied to the areas of Gangnam-Gu, Seocho-Gu, and Songpa-Gu in Seoul from August to November of 2003; the Participatory Government of Korea designated these areas and this period as the most speculative. The results of the analysis show that the area around Gaepo-Dong was as a hotspot before the Government's anti-speculative 10.29 policy in 2003; the house prices in the same area stabilized in October, 2003 and the area was identified as a coldspot in December, 2003. This case study shows that the suggested method enables exploration of hotspot of house price volatility at micro spatial scales which had not been detected by visual analysis.

투기가 발생할 가능성이 높은 지역은 일정지역 내의 대다수 경제주체가 적응적 소유자와 수요자일 때 형성된다. 이 지역의 가격변동은 타 지역에 비해서 가격상승 폭이 크고, 개별 부동산들의 주변 부동산들과 가격변동의 방향이 동질적인 특성을 가진 가격변동 핫스팟 패턴을 형성한다. 본 연구의 목적은 투기과열지역을 정량적으로 탐색하기 위한 가격변동 핫스팟 탐색법을 개발하는 것이다. 가격변동 핫스팟 탐색법은 크게 2단계로 구성된다. 첫째 단계는 정규모형의 공간스캔통계량을 이용하여 타 지역에 비해 높은 가격상승이 이루어진 공간클러스터를 탐색한다. 둘째 단계는 국지 모란 I를 이용하여 공간클러스터 내의 개별부동산들이 그 주변 부동산과의 가격변동 방향이 동질적인가, 즉 공간연관성을 가지는가를 평가한다. 개발된 방법을 공간적으로는 참여정부에서 부동산 문제의 중심으로 알려진 서울시 강남 서초 송파구에 적용하였고, 시간적으로는 참여정부 주요 부동산 대책의 하나인 10.20 대책을 전후로 한 2해3년 8,9,10,11월의 가격변동 자료에 적용하였다. 10.29 대책발표 전인 8,9월에는 개포동을 중심으로 가격변동 핫스팟이 발견되었고, 10월은 10.29 대책에 의해서 소강상태를 보이다가 11월에는 가격변동 콜드스팟이 발견되었다. 이 결과는 제안된 방법이 기존 단순 시각화만을 통해서 탐색할 수 없었던 투기과열지역을 정량적 방법을 통해서 시공간적으로 탐색할 수 있음을 보여준다.

Keywords

References

  1. 강원철. 김용창. 서순탁. 서후석. 임재만, 2004, 부동산 학 개론, 부동산114 주식회사, 서울
  2. 건교부, 2005, 토지를 활용한 부동산시장 상시모니터링체 계 구축방안 연구, 국토연구원
  3. 손학기, 2008, '투기과열지역의 공간패턴 모형화,' 대한지리학회지, 43(1), 104-116
  4. 이명희(역), 2007, 행동경제학, 지형, 서울(友野典男, 2006, 行動経濟學経濟は 感情で動いてい, 光文 社, japan)
  5. Agarwal, J.D., Phillips, M., and Venkatasubramanian, S., 2006, The hunting of the bump: on maximizing statistical discrepancy. Proc. 17th Ann. ACMSIAM Symp. on Disc. Alg., 1137-1146
  6. Anselin, L., 1995, Local indicators of spatial association- LISA, Geographical Analysis, 27, 93-115 https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  7. Anselin, L. and Bao, S., 1997, Exploratory Spatial Data Analysis Linking SpaceStat and ArcView, in Fischer, M. and Getis, A.(eds.), Recent Development in Spatial Analysis, 35-59, Springer -Verlag, Berlin
  8. Anselin, L., Cohen, J., Cook, D., Gorr, W., and Tita, G., 2000, Spatial analyses of crime, Criminal Justice 2000, National Institute of Justice, Washington, D.C
  9. Besag, J. and Newell, J., 1991, The detection of clusters in rare diseases, Journal of the Royal Statistical Society A, 154, 143-155
  10. Block, 1994, STAC hot spot areas: A statistical tool for law enforcement decisions, Chicago: Illinois Criminal Justice and Information Authority, Retrieved 28 April 2008 from the World Wide Web: http://www.icjia.state.il.us/public/pdf/stac /Hotspot.pdf
  11. Brantingham, P.L. and Brantingham, P.J., 1982, Mobility, notoriety and crime: A study of crime patterns in urban nodal points, Journal of Environmetal Systems, 11, 89-99
  12. Boots, B.N., 2002, Local measures of spatial association, Ecoscience, 9, 168-176 https://doi.org/10.1080/11956860.2002.11682703
  13. Cleveland, W.S., 1993, Visualizing data, Summit, Hobart Press, New Jersey
  14. Cliff, A.D. and Haggett, P., 1988, Atlas of disease distributions: analytic approaches to epidemiological data, Blackwell Publishers, Oxford
  15. Elliott, P.J., Wakefield, C., Best, N.G., and Briggs, D.J., 2000, Spatial Epidemiology: Methods and Applications, Oxford University Press, Oxford
  16. Fotheringham, A.S. and Zhan, F.B., 1996, A Comparison of Three Exploratory Methods for Cluster Detection in Spatial Point patterns, Geographical Analysis, 28, 200-218 https://doi.org/10.1111/j.1538-4632.1996.tb00931.x
  17. Gahegan, M. and O'Brien, D., 1997, A strategy and architecture for the visualization of complex geographical datasets, International Journal of Pattern Recognition and Artificial Intelligence, 11, 239-261 https://doi.org/10.1142/S0218001497000111
  18. Getis, A. and Ord, T.K., 1995, The analysis of spatial association by use of distance statistics, Geographic Analysis, 24, 188-206
  19. Hirschfield, A., Brown, P., and Todd, P., 1995, GIS and the analysis of spatially referenced crime data: experiences in Merseyside, UK, International Journal of Geographical Information Science, 9(2), 191-220 https://doi.org/10.1080/02693799508902033
  20. Huang, L., Kulldorff, M., and Gregorio, D., 2007, A spatial scan statistic for survival data, Biometrics, 63(1), 109-118 https://doi.org/10.1111/j.1541-0420.2006.00661.x
  21. Jung, I., Kulldorff, M., and Klassen, A., 2006, A spatial scan statistic for ordinal data, Statistics in Medicine, 26(7), 1594-1607 https://doi.org/10.1002/sim.2607
  22. Knox, G., 1989, Detection of clusters, In Methodology of Enquiries into Disease Clustering, Elliott, P.(ed.), 17-22, Small Area Health Statistics Unit, London
  23. Kulldorff, M., 1997, A spatial scan statistic, Communications in Statistics-Theory and methods, 26, 1481-1496 https://doi.org/10.1080/03610929708831995
  24. Kulldorff, M., 2006, SaTScan v7.0: SatScan user guide, Retrieved 22 January 2008 from the World Wide Web: http://www.satscan.org
  25. Kulldorff, M. and Nagarwalla, N., 1995, Spatial disease clusters: detection and inference, Statistics in Medicine, 14, 799-810 https://doi.org/10.1002/sim.4780140809
  26. Kulldorff, M., Huang, L., Pickle, L., and Duczmal, L., 2006, An elliptic spatial scan statistic, Statistics in Medicine, 25(22), 3929-3943 https://doi.org/10.1002/sim.2490
  27. Lawson, A.B. and Kleinman, K., 2005, Spatial and Syndromic Surveillance for Public Health, John Wiley & Sons, Inc
  28. Lee, S.L., 2001, Spatial Association Measures for An ESDA-GIS Framework: Developments, Significance Tests, And Applications to Spatio- Temporal Income Dynamics of U.S. Labor Market Areas, 1969-1999, Ph.D. Dissertation, Department of Geography, The Ohio State University
  29. Levine, N., 2006, Crime Mapping and the Crimestat Program, Geographical Analysis, 38, 41-56 https://doi.org/10.1111/j.0016-7363.2005.00673.x
  30. MacEachren, A.M. and Kraak, M.J., 1997, Exploratory cartographic visualization: Advancing the agenda, Computers and Geosciences, 23, 335-343 https://doi.org/10.1016/S0098-3004(97)00018-6
  31. Murray, A.T., McGuffog, I., Western, J.S., and Mullins, P., 2001, Exploratory spatial data analysis techniques for examining urban crime, British Journal of Criminology, 41, 309-329 https://doi.org/10.1093/bjc/41.2.309
  32. Neill, D.D. and Moore, A.W., 2005, Anomalous spatial cluster detection, Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection, Retrieved 28 April 2008 from the World Wide Web: http://www.cs.cmu.edu/ -neill/papers/ADKDD-Neill.pdf
  33. Openshaw, S. and Alvanides, S., 1999, Applying geocomputation to the analysis of spatial distributions, In Longley, P., Goodchild, M., Maguire, D., and Rhind, D.(2d ed.), Geographical Information Systems, John Wiley & Sons, Inc
  34. Openshaw, S., Charlton, M., Wymer, C., and Craft, A., 1987, A Mark 1 geographical analysis machine for the automated analysis of point datasets, International Journal of Geographical Information Systems, 1, 335-358 https://doi.org/10.1080/02693798708927821
  35. Ord, J.K. and Getis, A., 1995, Local spatial autocorrelation statistics: Distributional issues and an application, Geographical Analysis, 27, 286-306 https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
  36. Rheingans, P. and Landreth, C., 1995, Perceptual principles for effective visualizations In Grinstein, G. and Levkovitz, H.(ed), Perceptual issues in visualization, Berlin: Springer-Verlag
  37. Sankoh, O.A. and Becher, H., 2002, Disease cluster detection methods in epidemiology with application to data on childhood mortality in rural Burkina Faso, West Africa, Epidemiology and Biostatistics in Medicine and Biology, 33, 460-472
  38. Sherman, L.W., 1995. Hot spots of crime and criminal careers of places, In Eck, J.E. and Weisburd, D.(ed), Crime and place, Criminal Justice Press, Monsey, NY, 35-52
  39. Sherman, L.W. and Weisburd, D.A., 1995, General deterrent effects of police patrol in crime hot spots: A randomized, controlled trial, Justice Quarterly, 12, 625-648 https://doi.org/10.1080/07418829500096221
  40. Spelman, L.W., 1995, Criminal careers of public places, In Eck, J.E. and Weisburd, D.(eds.), Crime and place, Crime Prevention Studies, 4, Criminal Justice Press
  41. Turnbull, B.W., Iwano, E.J., Burnett, W.S., Howe, H.L., and Clarke, L.C., 1990, Monitoring for clusters of disease: Application to leukemia incidence in upstate New York, American Journal of Epidemiology, 32, S136-S143
  42. Wong, D.W.S. and Lee, J., 2005, Statistical analysis of geographic information with ArcView GIS and ArcGIS, John Wiley & Sons, Inc