Small Animal PET Imaging with [$^{124}I$]FIAU for Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression in a Hepatoma Model

간암 동물 모델에서 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabinofuranosyl-5-[$^{124}I$iodo-uracil ($[^{124}I]FIAU$) 소동물 PET 영상 연구

  • Chae, Min-Jeong (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Tae-Sup (Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, June-Youp (Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Woo, Gwang-Sun (Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Jumg, Wee-Sup (Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Chun, Kwon-Soo (Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Jae-Hong (Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Ji-Sup (Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Ryu, Jin-Sook (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Cheon, Gi-Jeong (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • Choi, Chang-Woon (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • Lim, Sang-Moo (Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences)
  • Published : 2008.06.30

Abstract

Purpose: The HSV1-tk gene has been extensively studied as a type of reporter gene. In hepatocellular carcinoma (HCC), only a small proportion of patients are eligible for surgical resection and there is limitation in palliative options. Therefore, there is a need for the development of new treatment modalities and gene therapy is a leading candidate. In the present study, we investigated the usefulness of substrate, 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabino-furanosyi-5-[$^{124/125}I$]iodo- uracil ([$I^{124/125}I$]FIAU) as a non-invasive imaging agent for HSV1-tk gene therapy in hepatoma model using small animal PET. Material and Methods: With the Morris hepatoma MCA cell line and MCA-tk cell line which was transduced with the HSV1-tk gene, in vitro uptake and correlation study between [$^{125}I$]FIAU uptake according to increasing numeric count of percentage of MCA-tk cell were performed. The biodistribution data and small animal PET images with [$^{124}I$]FIAU were obtained with Balb/c-nude mice bearing both MCA and MCA-tk tumors. Results:, Specific accumulation of [[$^{125}I$]FIAU was observed in MCA-tk cells but uptake was low in MCA cells. Uptake in MCA-tk cells was 15 times higher than that of MCA cells at 480 min. [$^{125}I$]FIAU uptake was linearly correlated (R2 =0.964, p =0.01) with increasing percentage of MCA-tk numeric cell count. Biodistribution results showed that [$^{125}I$]FIAU was mainly excreted via the renal system in the early phase. Ratios of MCA-tk tumor to blood acting were 10, 41, and 641 at 1 h, 4 h, and 24 h post-injection, respectively. The maximum ratio of MCA-tk to MCA tumor was 192.7 at 24 h. Ratios of MCA-tk tumor to liver were 13.8, 66.8, and 588.3 at 1 h, 4 h, and 24 h, respectively. On small animal PET, [$^{124}I$]FIAU accumulated in substantial higher levels in MCA-tk tumor and liver than MCA tumor. Conclusion: FIAU shows selective accumulation to HSV1-tk expressing hepatoma cell tumors with minimal uptake in normal liver. Therefore, radiolabelled FIAU is expected to be a useful substrate for non-invasive imaging of HSV1-tk gene therapy and therapeutic response monitoring of HCC.

목적: 간암은 치명적인 질환으로 유전자 치료가 기존 치료의 대체적 치료로 기대되고 있으며, 이러한 치료법의 발달과 함께 유전자의 발현을 평가할 수 있는 보고 유전자 시스템의 필요하다. 그 중 HSV1-tk 유전자는 보고 유전자로서 필요한 조건을 두루 만족시키고 있을 뿐만 아니라 별도의 치료유전자를 따로 이입할 필요가 없다는 장점을 가지고 있어 가장 많이 사용되는 방법이다. 이 연구는 간암의 유전자 치료를 위해 간암 동물 모델에서 유전자로 HSV1-tk를 사용하고 보고 기질로 방사성 요오드 표지 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabinofuranosyl-5-iodouracil (FIAU)를 사용하여 소동물 양전자 방출영상(positron emission tomography, PET)을 얻어 비침습적 생체 유전자 발현 영상의 가능성을 확인하고 자 하였다. 대상 및 방법: HSV1-tk 보고 유전자 이입 간암세포주인 MCA-tk와 MCA 세포주를 이용하여 in vitro 상에서의 [$^{125}I$]FIAU의 섭취실험과 섭취량과 발현량의 상관성평가를 위해 세포수 백분율에 따른 섭취실험을 실시하였다. 피하 간암 동물모델을 이용하여 [$^{125}I$]FIAU의 생체분포를 평가하였으며 [$^{125}I$]FIAU를 이용하여 소동물 PET을 통한 생체영상을 분석하였다. 결과: HSV1-tk 유전자가 이입된 MCA-tk 세포에서는 특이적인 동위원소의 집적이 발생하였으며 대조군인 MCA에서는 거의 집적이 이루어지지 않았다. 섭취 후 480 분에서 두 세포주의 섭취비는 15 배로 나타났다. MCA-tk 세포주의 백분율이 증가함에 따라 [$^{125}I$]FIAU의 섭취량도 직선적 상관관계($R^2=0.9644$)에 따라 증가하여 기질의 섭취량이 유전자 발현량을 잘 반영하고 있음이 확인되었다. 피하 종양 동물모델의 생체분포 결과 [$^{125}I$]FIAU는 초기에 신장으로 빠르게 배출되며 1 시간 이후 생체내 deiodinase에 의하여 분해되어 위와 갑상선의 섭취가 증가된 값을 보였다. MCA-tk 종양 대 혈액 비와 MCA-tk 종양 대 근육 비는 투여 후 24 시간 사이에 최대 641의 값을 나타내었다. 또한 HSV1-tk 유전자가 발현하지 않은 MCA종양에 비하여 MCA-tk 종양은 192.7 배 높은 섭취를 보여 [$^{125}I$]FIAU의 섭취는 HSV1-tk 유전자 발현에 특이적임을 확인하였다. MCA-tk 종양 대 간의 집적의 경우에도 초기 1시간에 13.8 배, 4 시간에 66.8 배, 24 시간에 혈액 비와 비슷한 정도의 588.3배 이상의 대조도를 보여 주었다. [$^{124}I$]FIAU를 보고 기질로 사용한 소동물 PET 생체영상에서 대조군인 MCA 종양과 보고 유전자가 이입된 MCA-tk 종양에의 집적이 차이가 매우 큰 대조도를 보여주었으며 생체분포 결과와 일치하는 양상을 나타내었다. 결론: $^{125}I$-FIAU가 세포 섭취율 시험과 생체 분포에서 MCA-tk 종양에 높은 집적을 나타내었고 $^{124}I$-FIAU를 이용한 소동물 PET 영상에서 MCA-tk 종양이 표적장기인 간이나 MCA 종양에 비하여 매우 높은 대조도를 나타냈다. 향후, 간암의 유전자 치료에서 FIAU은 HSV1-tk를 보고 유전자로 사용할 때 적절한 기질로서 비침습적으로 핵의학 영상을 이용한 유전자 발현의 평가를 가능하게 할 수 있을 것으로 기대된다.

Keywords

References

  1. Juan Ruiz, Guillermo Mazzolini, Bruno Sangro, Cheng Qian, Jesus Prieto. Gene Therapy of Hepatocellular Carcinoma. Dig Dis 2001; 19:324-32 https://doi.org/10.1159/000050699
  2. Qian C, Idoate M, Bilbao R, Sangro B, Bruna O, Vazquez J, et al. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma. Hum Gene Ther 1997:8:349-58 https://doi.org/10.1089/hum.1997.8.3-349
  3. Bilbao R, Gerolami R, Bralet MP, Qian C, Tran PL, Tennant B, et al. Transduction efficacy, antitumoral effect and toxicity of adenovirusmediated herpes simplex virus thymidine kinase/ganciclovir therapy of hepatocellular carcinoma: The woodchuck animal model. Cancer Gene Ther 2000;7:657-62 https://doi.org/10.1038/sj.cgt.7700175
  4. Gerolami R, Cardoso J, Lewin M, Bralet MP, Sa Cunha A, Clement O, et al. Evaluation of HSV-tk gene therapy in a rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes. Cancer Res 2000:60:993-1001
  5. Cheng YC, Huang ES, Lin JC, Mar EC, Pagano JS, Dutschman GE, et al. Unique spectrum of activity of 9-[(1,3-dihydroxy-2- propoxy)-methyl]-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1. Proc Natl Acad Sci U S A 1983;80:2767-70 https://doi.org/10.1073/pnas.80.9.2767
  6. Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2- hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A 1977; 74:5716-20 https://doi.org/10.1073/pnas.74.12.5716
  7. Keller PM, Fyfe JA, Beauchamp L, Lubbers CM, Furman PA, Schaeffer HJ, et al. Enzymatic phosphorylation of acyclic nucleoside analogs and correlations with antiherpetic activities. Biochem Pharmacol 1981;30:3071-7 https://doi.org/10.1016/0006-2952(81)90495-0
  8. Miyagawa M, Anton M, Haubner R, Simoes MV, Stadele C, Erhardt W. et al. PET of cardiac transgene expression: comparison of 2 approaches based on herpesviral thymidine kinase reporter gene. J Nucl Med 2004;45:1917-23
  9. Martin JA, Thomas GJ, Merrett JH, Lambert RW, Bushnell DJ, Dunsdon SJ, et al. The design, synthesis and properties of highly potent and selective inhibitors of herpes simplex virus types 1 and 2 thymidine kinase. Antivir Chem Chemother 1998;9:1-8 https://doi.org/10.1177/095632029800900401
  10. Chia-Hung Hsieha, Ren-Shyan Liua,b, Hsin-Ell Wang. In vitro evaluation of herpes simplex virus type 1 thymidine kinase reporter system in dynamic studies of transcriptional gene regulation Nucl Med Biol 33 (2006) 653-60
  11. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126-32
  12. Tovell DR, Samuel J, Mercer JR, Misra HK, Xu L, Wiebe LI, et al. The in vitro evaluation of nucleoside analogues as probes for use in the noninvasive diagnosis of herpes simplex encephalitis. Drug Des. Deliv 1988;3:213-21
  13. de Vries EF, van Waarde A, Harmsen MC, Mulder NH, Vaalburg W, Hospers GA. $[^{11}C]$FMAU and $[^{18}F]$FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections. Nucl. Med. Biol. 2000;27:113-9 https://doi.org/10.1016/S0969-8051(99)00105-5
  14. Morin KW, Atrazheva ED, Knaus EE, Wiebe LI. Synthesis and cellular uptake of 2-substituted analogues of (E)-5-(2-$[^{125}I]$ iodovinyl)-2_-deoxyuridine in tumor cells transduced with the herpes simplex type-1 thymidine kinase gene: evaluation as probes for monitoring gene therapy. J Med. Chem 1997;40: 2184-90 https://doi.org/10.1021/jm9606406
  15. Namavari M, Barrio JR, Toyokuni T, Gambhir SS, Cherry SR, Herschman HR, et al. Synthesis of 8-$[^{18}F]$fluoroguanine derivatives: in vivo probes for imaging gene expression with positron emission tomography. Nucl. Med. Biol 2000;27:157-62 https://doi.org/10.1016/S0969-8051(99)00095-5
  16. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl. Acad. Sci. USA 2000;97:2785-90 https://doi.org/10.1073/pnas.97.6.2785
  17. Alauddin MM, Conti PS, Mazza SM, Hamzeh FM, Lever JR. 9 - [ ( 3-$[^{18}F]$-Fluoro-1-hydroxy-2-propoxy)methyl]guanine ($[^{18}F]$-FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl. Med. Biol 1996;23:787-92 https://doi.org/10.1016/0969-8051(96)00075-3
  18. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-$[^{18}F]$-fluoro -3-hydroxymethylbutyl)guanine ($[^{18}F]$FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl. Med. Biol 1998;25:175-80 https://doi.org/10.1016/S0969-8051(97)00160-1
  19. Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43:1072-83
  20. Moon BS, Lee TS, Lee MK, Lee KC, An GI, Chun KS, et al. Synthesis and Preliminary Evaluation of 9-(4-$[^{18}F]$Fluoro-3-hydroxymethylbutyl) Guanine ($[^{18}F]$FHBG) in HSV1-tk Gene Transduced Hepatoma Cell. Nucl Med Mol Imaging 2006;4:218-27
  21. Min JJ, Iyer M, Gambhir SS. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection..Eur J Nucl Med Mol Imaging 2003;30(11):1547-60 https://doi.org/10.1007/s00259-003-1238-6
  22. Beck C, Cayeux S, Lupton SD, Dorken B, Blankenstein T. The thymidine kinase/ganciclovir-mediated "suicide" effect is variable in different tumor cells. Hum Gene Ther 1995;6:1525-1530 https://doi.org/10.1089/hum.1995.6.12-1525
  23. Haberkorn U, Altmann A, Morr I, Knopf KW, Germann C, Haeckel R, et al. Monitoring gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates. J Nucl Med 1997;38:287-294
  24. Min JJ, Iyer M, Gambhir SS. Comparison of $^{18}F$-FHBG and $^{14}C$-FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur J Nucl Med Mol Imaging 2003;30:1547-60 https://doi.org/10.1007/s00259-003-1238-6
  25. Brust P, Haubner R, Friedrich A, Scheunemann M, Anton M, Koufaki ON, et al. Comparison of [18F]FHPG and [124/125I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene xpression. J Nucl Med 2001;28:721-9 https://doi.org/10.1007/s002590100526
  26. Kang KW, Min JJ, Chen X, Gambhir SS. Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol Imaging Biol 2005 7:296-303 https://doi.org/10.1007/s11307-005-0010-7
  27. Haubner R, Avril1 N, Hantzopoulos PA, Gansbacher B, Schwaiger M. In vivo imaging of herpes simplex virus type 1 thymidine kinase gene expression: early kinetics of radiolabelled FIAU. Eur J Nucl Med 2000; 27:283-91 https://doi.org/10.1007/s002590050035
  28. Morin KW, Duan W, Xu L, Zhou A, Moharram S, Knaus EE. et al. Cytotoxicity and cellular uptake of pyrimidine nucleosides for imaging herpes simplex type-1 thymidine kinase (HSV-1 TK) expression in mammalian cells. Nucl Med Biol 2004;31:623-30 https://doi.org/10.1016/j.nucmedbio.2004.02.004