척추골전이에 있어 F-18 FDG PET/CT에 대한 골스캔의 추가적 역할 및 F-18 FDG PET/CT와 골스캔간에 불일치 병소에 대한 연구

Value of Bone Scan in Addition to F-18 FDG PET/CT and Characteristics of Discordant lesions between F-18 FDG PET/CT and Bone Scan in the Spinal Bony Metastasis

  • 전성민 (부산대학교 병원 핵의학과) ;
  • 남현열 (부산대학교 병원 핵의학과) ;
  • 김인주 (부산대학교 병원 핵의학과) ;
  • 김용기 (부산대학교 병원 핵의학과) ;
  • 김주성 (신라대학교 간호학과)
  • Jun, Sung-Min (Department of Nuclear Medicine, Pusan National University Hospital) ;
  • Nam, Hyun-Yeol (Department of Nuclear Medicine, Pusan National University Hospital) ;
  • Kim, In-Ju (Department of Nuclear Medicine, Pusan National University Hospital) ;
  • Kim, Yong-Ki (Department of Nuclear Medicine, Pusan National University Hospital) ;
  • Kim, Ju-Sung (Department of Nursing, College of Medical Life Science, Silla University)
  • 발행 : 2008.06.30

초록

목적 : 본 연구의 목적은 골스캔이 없이 FDG PET/CT가 단독으로 척추골전이 평가에 사용될 경우 간과될 수 있는 척추골전이의 양상을 알아보기 위한 것이며 이와 더불어 척추골전이에서 FDG PET/CT와 골스캔간에 불일치 소견을 보이는 병소의 특징을 파악하고자 하는 것이었다. 대상 및 방법 : 척추골전이가 있는 43명의 환자군의 FDG PET/CT와 골스캔을 후향적으로 분석하였다. FDG PET/CT와 골스캔상 불일치하는 소견을 보인 병소를 주의깊게 분석하였다. FDG PET/CT 단독과 골스캔을 참조한 FDG PET/CT 결과들을 McNemar 검정을 이용하여 분석하였다. FDG PET/CT 단독분석상 간과된 척추골전이 병소의 특징을 알아보기 위하여 일방항카이스퀘어 검정을 시행하였다. 척추골전이 병소의 Tc-99m MDP 섭취와 연관이 있는 인자를 확인하기 위하여 로지스틱 회귀분석을 시행하였다. 독립변수는 위치(경추부, 흉추부, 요추부), 전이 병소 크기(큼, 작음), 및 최대 SUV로 설정하였으며, 종속변수는 골스캔의 섭취(양성 및 음성 MDP 섭취)로 하였다. 결과 FDG PET/CT 단독 분석의 결과는 FDG PET/CT와 골스캔을 함께 참조한 경우와 유의하게 달랐다(p<0.01). FDG PET/CT 단독 분석상에서 미만성조골전이는 유의하게 높은 빈도로 간과되는 경향이 있었다(p=0.04). 척추골전이의 Tc-99m MDP 섭취에 연관이 있는 인자를 확인하기 위한 단변량 로지스틱 회귀분석상 경추부 병소 및 작은 전이 병소는 음성 MDP 섭취와 관련이 있었으며, 흉추부 병소 및 큰 전이 병소는 양성 MDP 섭취와 연관이 있었다. 그러나, 다변량 로지스틱 회귀분석상 오직 전이 병소의 크기만이 양성 MDP 섭취와 연관이 있었다(p<0.01). 결론 : 골스캔은 척추골전이 평가에 있어 FDG PET/CT에 추가적인 역할을 하며, 특히 미만성조골전이에서 더욱 그러하다. 척추골전이 병소의 크기와 골스캔상 섭취가 연관이 있는 듯 하다.

Purpose: Our purpose was to evaluate spinal bony metastasis which could be missed on an F-18 FDG PET/CT (FDG PET/CT) alone, and to characterize discordant metastatic lesions between FDG PET/CT and bone scan. Material and Methods: FDG PET/CT and bone scans of 43 patients with spinal bony metastasis were analyzed retrospectively. A McNemar test was performed comparing the FDG PET/CT alone to the FDG PET/CT plus bone scan in the spinal bony metastases. A one-way chi-square test was performed to characterize the metastases that were missed on the FDG PET/CT alone. To evaluate discordant lesions between FDG PET/CT and bone scan, we performed logistic regression analyses. The independent variables were sites (cervical, thoracic, and lumbar), size (large and small), and maximum SUVs, and the dependant variable was bone scan uptake (positive and negative MDP uptake). Results: A significant difference was found between the FDG PET/CT alone and the FDG PET/CT combined with the bone scan (p < 0.01). Using the FDG PET/CT only, diffuse osteoblastic metastasis was missed with a significantly higher frequency (p = 0.04). In the univariate analysis, cervical vertebra and small size were related to negative MDP uptake, and thoracic vertebra and large size were related to positive MDP uptake. However, in the multivariate analysis, only the large size was related to positive MDP uptake. Conclusion: A bone scan in addition to the FDG PET/CT increased the ability to evaluate spinal bony metastases, especially for diffuse osteoblastic metastasis. Large metastasis was related to positive bone scan uptake in spinal bony metastasis.

키워드

참고문헌

  1. Morgan-Parkes JH. Metastases: mechanisms, pathways, and cascades. AJR Am J Roentgenol 1995;164:1075-82 https://doi.org/10.2214/ajr.164.5.7717206
  2. Basu S, Torigian D, Alavi A. Evolving concept of imaging bone marrow metastasis in the twenty-first century: critical role of FDG-PET. Eur J Nucl Med Mol Imaging 2008;35:465-71 https://doi.org/10.1007/s00259-007-0593-0
  3. Bourgeois P, Thimpont J, Feremans W, Malarme M. Bone marrow scintigraphy in lung carcinomas using nanosized colloids: when is it useful and how useful is it? Nucl Med Commun 1992;13:421-8 https://doi.org/10.1097/00006231-199206000-00041
  4. Widding A, Stilbo I, Hansen SW, Hansen HH, Rossing N. Scintigraphy with nanocolloid Tc 99m in patients with small cell lung cancer, with special reference to bone marrow and hepatic metastasis. Eur J Nucl Med 1990;16:717-9 https://doi.org/10.1007/BF00998176
  5. Reske S, Kartsens J, Sohn M, Glockner W, Buell U. Bone marrow immunoscintigraphy compared with conventional bone scintigraphy for the detection of bone metastases. Acta Oncol 1993;32:753-61 https://doi.org/10.3109/02841869309096132
  6. Bourgeois P, Gassavelis C, Malarme M, Feremans W, Fruhling J. Bone marrow scintigraphy in breast cancer. Nucl Med Commun 1989;10:389-400 https://doi.org/10.1097/00006231-198906000-00002
  7. Eustace S, Tello R, DeCarvalho V, Carey J, Wroblicka JT, Melhem ER, et al. A comparison of whole-body turbo STIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 1997;169:1655-61 https://doi.org/10.2214/ajr.169.6.9393186
  8. Flickinger FW, Sanal SM. Bone marrow MRI: techniques and accuracy for detecting breast cancer metastases. Magn Reson Imaging 1994;12:829-35 https://doi.org/10.1016/0730-725X(94)92023-0
  9. Frank JA, Ling A, Patronas NJ, Carrasquillo JA, Horvath K, Hickey AM, Dwyer AJ. Detection of malignant bone tumors: MR imaging vs scintigraphy. AJR Am J Roentgenol 1990;155:1043-8 https://doi.org/10.2214/ajr.155.5.2120933
  10. Evans AJ, Robertson JF. Magnetic resonance imaging versus radionuclide scintigraphy for screening in bone metastases. Clin Radiol 2000;55:653-4
  11. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, Schober O, Rummeny EJ. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 2001;177:229-36 https://doi.org/10.2214/ajr.177.1.1770229
  12. Mavi A, Lakhani P, Zhuang H, Gupta NC, Alavi A. Fluorodeoxyglucose- PET in characterizing solitary pulmonary nodules, assessing pleural diseases, and the initial staging, restaging, therapy planning, and monitoring response of lung cancer. Radiol Clin North Am 2005;43:1-21 https://doi.org/10.1016/j.rcl.2004.09.001
  13. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998;16:603-9 https://doi.org/10.1200/JCO.1998.16.2.603
  14. Kasamon YL, Wahl RL, Swinnen LJ. FDG PET and high-dose therapy for aggressive lymphomas: toward a risk-adapted strategy. Curr Opin Oncol 2004;16:100-5 https://doi.org/10.1097/00001622-200403000-00003
  15. Kumar R, Alavi A. Fluorodeoxyglucose-PET in the management of breast cancer. Radiol Clin North Am 2004;42:1113-22 https://doi.org/10.1016/j.rcl.2004.08.005
  16. Kumar R, Maillard I, Schuster SJ, Alavi A. Utility of fluorodeoxyglucose- PET imaging in the management of patients with Hodgkin's and non-Hodgkin's lymphomas. Radiol Clin North Am 2004;42: 1083-100 https://doi.org/10.1016/j.rcl.2004.08.008
  17. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B, Trager H, Nussle K, Reske SN. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999;40:1623-9
  18. Brink I, Schumacher T, Mix M, Ruhland S, Stoelben E, Digel W, et al. Impact of F-18 FDG-PET on the primary staging of small-cell lung cancer. Eur J Nucl Med Mol Imaging 2004;31:1614-20 https://doi.org/10.1007/s00259-004-1606-x
  19. Wikenheiser KA, Silberstein EB. Bone scintigraphy screening in stage I-II breast cancer: is it cost-effective? Cleve Clin J Med 1996;63:43-7 https://doi.org/10.3949/ccjm.63.1.43
  20. Haubold-Reuter BG, Duewell S, Schilcher BR, Marincek B, von Schulthess GK. The value of bone scintigraphy, bone marrow scintigraphy and fast spin-echo magnetic resonance imaging in staging of patients with malignant solid tumours: a prospective study. Eur J Nucl Med 1993;20:1063-9
  21. Cooper M, Miles KA, Wraight EP, Dixon AK. Degenerative disc disease in the lumbar spine: another cause for focally reduced activity on marrow scintigraphy. Skeletal Radiol 1992;21:247-9
  22. Palestro CJ, Kim CK, Swyer AJ, Vallabhajosula S, Goldsmith SJ. Radionuclide diagnosis of vertebral osteomyelitis: indium-111- leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med 1991;32:1861-5
  23. Rudberg U, Ahlback SO, Uden R. Bone marrow scintigraphy in Paget's disease of bone. Acta Radiol 1990;31:141-4 https://doi.org/10.3109/02841859009177476
  24. Even-Sapir E, Martin RH, Barnes DC, Pringle CR, Iles SE, Mitchell MJ. Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology 1993;187:193-8 https://doi.org/10.1148/radiology.187.1.8451412
  25. Delpassand ES, Garcia JR, Bhadkamkar V, Podoloff DA. Value of SPECT imaging of the thoracolumbar spine in cancer patients. Clin Nucl Med 1995;20:1047-51
  26. Bushnell DL, Kahn D, Huston B, Bevering CG. Utility of SPECT imaging for determination of vertebral metastases in patients with known primary tumors. Skeletal Radiol 1995;24:13-6 https://doi.org/10.1007/BF02425938
  27. Han LJ, Au-Yong TK, Tong WC, Chu KS, Szeto LT, Wong CP. Comparison of bone single- photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med 1998;25:635-8 https://doi.org/10.1007/s002590050266
  28. Sedonja I, Budihna N. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med 1999;24:407-13 https://doi.org/10.1097/00003072-199906000-00006
  29. Savelli G, Chiti A, Grasselli G, Maccauro M, Rodari M, Bombardieri E. The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res 2000;20:1115-20
  30. Reinartz P, Schaffeldt J, Sabri O, Zimny M, Nowak B, Ostwald E et al. Benign versus malignant osseous lesions in the lumbar vertebrae: differentiation by means of bone SPET. Eur J Nucl Med 2000;27:721-6 https://doi.org/10.1007/s002590050568
  31. Bohdiewicz PJ, Wong CY, Kondas D, Gaskill M, Dworkin HJ. High predictive value of F-18 FDG PET patterns of the spine for metastases or benign lesions with good agreement between readers. Clin Nucl Med 2003;28:966-70 https://doi.org/10.1097/01.rlu.0000099806.96580.db
  32. Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E. Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med 2004;45:279-84
  33. Kamby C, Guldhammer B, Vejborg I, Rossing N, Dirksen H, Daugaard S, et al. Clinical and radiologic characteristics of bone metastases in breast cancer. Cancer 1987 15;60:2524-31
  34. Cheran SK, Herndon JE 2nd, Patz EF Jr. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 2004;44:317-25 https://doi.org/10.1016/j.lungcan.2003.11.008
  35. Lonneux M, Borbath I I, Berliere M, Kirkove C, Pauwels S. The Place of Whole-Body PET FDG for the Diagnosis of Distant Recurrence of Breast Cancer. Clin Positron Imaging 2000;3:45-9 https://doi.org/10.1016/S1095-0397(00)00042-X
  36. Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK, Coleman RE, et al. Staging non-small cell lung cancer with whole-body PET. Radiology 1999;212:803-9 https://doi.org/10.1148/radiology.212.3.r99se21803
  37. El-Haddad G, Zhuang H, Gupta N, Alavi A. Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin Nucl Med 2004;34:313-29 https://doi.org/10.1053/j.semnuclmed.2004.06.006
  38. Durski JM, Srinivas S, Segall G. Comparison of FDG-PET and Bone Scans for Detecting Skeletal Metastases in Patients with Non-small Cell Lung Cancer. Clin Positron Imaging 2000;3:97-105
  39. Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro- D-glucose. Radiology 1996;199:751-6 https://doi.org/10.1148/radiology.199.3.8638000
  40. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375-9 https://doi.org/10.1200/JCO.1998.16.10.3375
  41. Alavi A, Lakhani P, Mavi A, Kung JW, Zhuang H. PET: a revolution in medical imaging. Radiol Clin North Am 2004;42:983-1001 https://doi.org/10.1016/j.rcl.2004.08.012
  42. Snell RS. Clinical anatomy for medical students. 5th ed. Boston: Little, Brown and Company; 1995. p. 822-33
  43. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 1998;25:1244-7 https://doi.org/10.1007/s002590050291
  44. Rosen RS, Fayad L, Wahl RL. Increased 18F-FDG uptake in degenerative disease of the spine: Characterization with 18F-FDG PET/CT. J Nucl Med 2006;47:1274-80