DOI QR코드

DOI QR Code

EFFECTS OF COLLISIONAL DE-EXCITATION ON THE RESONANCE DOUBLET FLUX RATIOS IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • Kang, Eun-Ha (Department of Astronomy and Space Science, Astrophysical Research Center for the Structure and Evolution of the Cosmos, Sejong University) ;
  • Lee, Hee-Won (Department of Astronomy and Space Science, Astrophysical Research Center for the Structure and Evolution of the Cosmos, Sejong University)
  • Published : 2008.06.30

Abstract

Resonance doublets including O VI 1032, 1038, NV 1239, 1243 and C IV 1548, 1551 constitute prominent emission lines in symbiotic stars and planetary nebulae. Spectroscopic studies of symbiotic stars and planetary nebulae from UV space telescopes show various line ratios of these doublets deviating from the theoretical ratio of 2:1. Using a Monte Carlo technique, we investigate the collisional de-excitation effect in these emission nebulae. We consider an emission nebula around the hot component of a symbiotic star characterized by the collisional de-excitation probability $p_{coll}\;{\sim}\;10^{-3}\;-\;10^{-4}$ per each resonance scattering, and the line center optical depths for major resonance doublets in the range ${\tau}_0\;{\sim}\;10^2\;-\;10^5$. We find that various line ratios are obtained when the product $p_{coll}{\tau}_0$ is of order unity. Our Monte Carlo calculations show that the flux ratio can be approximately fitted by a linear function of ${\log}{\tau}_0$ when ${\tau}_0p_{coll}\;{\sim}\;1$. It is briefly discussed that this corresponds to the range relevant to the emission nebulae of symbiotic stars.

Keywords

References

  1. Adams, T. F., 1972, The Escape of Resonance Line Radiation from Extremely Opaque Media, ApJ, 174, 439 https://doi.org/10.1086/151503
  2. Ahn, S. -H., Lee, H. -W., & Lee, H. M., 2001, Ly $\alpha$ Line Formation in Starbursting Galaxies. I. Moderately Thick, Dustless, and Static H I Media, JKAS, 33, 29
  3. Avrett, E. H. & Hummer, D. G., 1965, Non-coherent scattering, II: Line formation with a frequency independent source function, MNRAS, 130, 295 https://doi.org/10.1093/mnras/130.4.295
  4. Bonilha, J. R. M., Ferch, R., Salpeter, E. E., & Slater, G., 1979, Monte Carlo calculations for resonance scattering with absorption or differential expansion, ApJ, 233, 649 https://doi.org/10.1086/157426
  5. Feibelman, W., 1983, Profiles and intensity ratios of the C IV lambda 1548, 1550 emission lines in planetary nebulae, A&A, 122, 335
  6. Frisch, H., 1980, Scaling laws for resonance line photons in an absorbing medium, A&A, 87, 357
  7. Harrington, J. P., 1973, The scattering of resonanceline radiation in the limit of large optical depth, MNRAS, 162, 43 https://doi.org/10.1093/mnras/162.1.43
  8. Harries, T. J. & Howarth, I. D., 1996, Raman scattering in symbiotic stars. I. Spectropolarimetric observations, A&AS, 119, 61 https://doi.org/10.1051/aas:1996228
  9. Hummer, D. G., 1962, Non-coherent scattering: I. The redistribution function with Doppler broadening, MNRAS, 125, 21 https://doi.org/10.1093/mnras/125.1.21
  10. Hummer, D. G. & Rybicki, G. B., 1971, The Formation of Spectral Lines, ARAA, 9, 237 https://doi.org/10.1146/annurev.aa.09.090171.001321
  11. Hummer, D. G. & Rybicki, G. B., 1982, A unified treatment of escape probabilities in static and moving media. I - Plane geometry, ApJ, 254, 767 https://doi.org/10.1086/159788
  12. Kafatos, M., Michalitsianos, A. G., & Fahey, R. P., 1985, High-dispersion ultraviolet spectra of the peculiar star RX Puppis, ApJS, 59, 785 https://doi.org/10.1086/191085
  13. Kenyon, S., 1986, The Symbiotic Stars, Cambridge University Press, New York
  14. Laor, A., Bahcall, J. N., Jannuzi, B. T., Schneider, D. P., & Green, R. F., 1995, The Ultraviolet Emission Properties of 13 Quasars, ApJS, 99, 1 https://doi.org/10.1086/192177
  15. Lee, H. -W. & Kang, S., 2007, Raman-scattered O VI 6825 and the Accretion Disk Emission Model in the Symbiotic Stars V1016 Cygni and HM Sagittae, ApJ, 669, 1156 https://doi.org/10.1086/521719
  16. Lee, H. -W. & Park, M. -G., 1999, Toward the Evidence of the Accretion Disk Emission in the Symbiotic Star RR Telescopii, ApJ, 515, L89 https://doi.org/10.1086/307027
  17. Mastrodemos, N. & Morris, M., 1998, Bipolar Preplanetary Nebulae: Hydrodynamics of Dusty Winds in Binary Systems. 1. Formation of Accretion Disks, ApJ, 497, 303 https://doi.org/10.1086/305465
  18. Michalitsianos, A. G., Kafatos, M., Fahey, R. P., Viotti, R., Cassatella, A., & Altamore, A., 1988, The C IV doublet ratio intensity effect in symbiotic stars., ApJ, 331, 477 https://doi.org/10.1086/166573
  19. Mikolajewska, J., Friedjung, M., & Quiroga, C., 2006, Line formation regions of the UV spectrum of CI Cygni, A&A, 460, 191 https://doi.org/10.1051/0004-6361:20052655
  20. Murset, U., Nussbaumer, H., Schmid, H. M., & Vogel, M., 1991, Temperature and luminosity of hot components in symbiotic stars, A&A, 248, 458
  21. Neufeld, D., 1990, The transfer of resonance-line radiation in static astrophysical media, ApJ, 350, 216 https://doi.org/10.1086/168375
  22. Osterbrock, D., 1989, Astrophysics of the Gaseous Nebulae and Active Galactic Nuclei, (University Science Books, Mill Valley)
  23. Rybicki, G. B. & Lightman, A. P., 1979, Radiative Processes in Astrophysics, (Wiley-Interscience, New York)
  24. Schmid, H. M., 1989, Identification of the emission bands at 6830, 7088 A, A&A, 211, L31
  25. Schmid, H. M. et al., 1999, ORFEUS spectroscopy of the O VI lines in symbiotic stars and the Raman scattering process, A&A, 348, 950
  26. Stenflo, J. O., 1980, Resonance-line polarization. V-Quantum-mechanical interference between states of different total angular momentum, A&A, 84, 68
  27. Vetterling, W. T., Teukolsky, S. A., & Press, W. H., 1985, Numerical Recipes, Cambridge University Press, Cambridge
  28. Yoo, J. J., Lee, H. - W., & Ahn, S. -H., 2002, Profiles of the resonance doublets formed in bipolar winds in symbiotic stars, MNRAS, 334, 974 https://doi.org/10.1046/j.1365-8711.2002.05581.x

Cited by

  1. Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco vol.728, 2016, https://doi.org/10.1088/1742-6596/728/7/072014
  2. RAMAN SCATTERED He II λ4332 IN THE SYMBIOTIC STAR V1016 CYGNI vol.750, pp.2, 2012, https://doi.org/10.1088/0004-637X/750/2/127
  3. A PROFILE ANALYSIS OF RAMAN-SCATTERED O VI BANDS AT 6825 Å AND 7082 Å IN SANDULEAK’S STAR vol.833, pp.2, 2016, https://doi.org/10.3847/1538-4357/833/2/286