DOI QR코드

DOI QR Code

Effect of Temperature on Development and Life Table Parameters of Tetranychus urticae Koch (Acari: Tetranychide) Reared on Eggplants

가지에서 온도별 점박이응애 발육특성 및 생명표 통계량

  • Kim, Ju (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Lee, Sang-Koo (Faculty of Biological Resources Science, Chonbuk National University) ;
  • Kim, Jeong-Man (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Kwon, Young-Rip (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Kim, Tae-Heung (Faculty of Biological Resources Science, Chonbuk National University) ;
  • Kim, Ji-Soo (Muju Agricultural Technology Center)
  • 김주 (전라북도 농업기술원) ;
  • 이상구 (전북대학교 농업생명과학대학 생물자원과학부) ;
  • 김정만 (전라북도 농업기술원) ;
  • 권영립 (전라북도 농업기술원) ;
  • 김태흥 (전북대학교 농업생명과학대학 생물자원과학부) ;
  • 김지수 (무주군농업기술센터)
  • Published : 2008.06.30

Abstract

Temperature dependent development of Tetranychus. urticae Koch was studied on the leaf of eggplant at 17, 22, 27, 32 and $37^{\circ}C$. T. urticae showed a minimum mortality at $27^{\circ}C$ and it increased at higher or lower temperatures than $27^{\circ}C$. The hatchability was low at 17 and $37^{\circ}C$. The duration of development decreased with increasing temperatures i.e., 5.3d at $37^{\circ}C$ and 25.8d at $17^{\circ}C$. Linear regression analysis of temperature vs. rate of development yielded the higher $r^2{\geq}0.88$ resulting in a good fit of the estimated line in the range of $17{\sim}37^{\circ}C$. Developmental zero temperature was $12.5^{\circ}C$ for the entire immature stage of female and $12.8^{\circ}C$ for that of male. Thermal constants were 80.5 and 74.7 degree days for those of female and male, respectively. Adult life span and oviposition period decreased with increasing temperatures. The number of eggs laid per female peaked at 141.0 eggs at $27^{\circ}C$, while that was a minimum 78.0 eggs at $37^{\circ}C$. Rate of hatchability, ratio of female, and $R_o$ were increased up to $27^{\circ}C$, and than declined thereafter. Intrinsic rate of natural increase (Rm) increased with rising temperatures and showed a maximum 0.5652 at $37^{\circ}C$. Also, ${\lambda}$ increased with increasing temperature. Doubling time (Dt) and generation time (T) decreased with increasing temperature.

가지잎에서 점박이응애의 온도에 따른 발육 특성을 조사한 결과 17, 22, 27, 32, $37^{\circ}C$에서 점박이응애의 사충률은 $27^{\circ}C$를 기준으로 온도가 올라가거나 내려감에 따라 증가하였고, 부화율은 $17^{\circ}C$$37^{\circ}C$에서 낮았다. 발육기간은 온도가 높아짐에 따라 감소하는 경향을 보이고 $37^{\circ}C$에서 5.3일로 가장 짧고, $17^{\circ}C$에서 25.8일로 가장 길었다. 온도와 발육률의 관계를 직선회귀에 의해 분석한 결과 $r^2$값이 0.88 이상으로 본 실험에서 수행한 온도 $17{\sim}37^{\circ}C$범위에서 점박이응애의 발육은 직선회귀에 부합되었다. 발육영점온도는 전체약충기간이 암컷 $12.5^{\circ}C$, 수컷 $12.8^{\circ}C$이었고, 전체약충기간의 유효적산온도는 암컷 80.5,수컷 74.7일도였다. 성충의 수명과 산란기간은 온도가 올라감에 따라 짧아졌고, 암수의 비교에 있어서 암컷이 수컷에 비해 수명이 길었다. 온도에 따른 산란수는 $27^{\circ}C$에서 141.0개로 가장 많았으며, $37^{\circ}C$에서 78.0개로 가장 적어 온도에 따른 변이가 컸다. 온도에 따른 부화율과 암컷의 비율도 $27^{\circ}C$를 정점으로 온도가 높아지거나 낮아지면 감소하였다. 점박이응애의 $R_o$ (순증가율)는 온도가 $27^{\circ}C$를 정점으로 온도가 높아지거나 낮아지면 감소하였고, $r_m$ (내적자연증가율)은 온도가 높아짐에 따라 같이 높아져 $37^{\circ}C$에서 최고치인 0.5652였으며, ${\lambda}$ (기간증가율)도 온도가 높아짐에 따라 높아졌다. DT (배수기간)와 T (평균세대기간)는 온도가 올라감에 따라 감소하였다.

Keywords

References

  1. Baek, U.H. 1959. Mites of apple. Society of Applied Zoology 2(1): 37-45
  2. Chung, B.K., S.W. Kang and J.H. Kwon. 2000. Chemical control system of Frankliniella occidentalis (Thysanoptera: Thripidae) in eggplants. J. Asia-Pacific Entomol. 3: 1-9 https://doi.org/10.1016/S1226-8615(08)60048-5
  3. Hikizi, N.M. 1967. About the ecological habits of two-spotted mite. (1) Host plant of two-spotted mite in winter. Annual Research Report of North Japan Disease and Pest Institute 11(18): 119
  4. Kim, D.I., S.C. Lee, and S.S. Kim. 1996. Biological characteristics of Amblyseius womersleyi Schica (Acarina: Phytoseiidae) as a predator of Tetranychus Kanzawai Kishida (Acarina: Tetranychidae). Korean J. Appl. Entomol. 35: 38-44
  5. Kim, J.S., C. Jung, and J.H. Lee. 2001a. Parameter estimation for temperature-dependent development model of Tetranychus urticae Koch immature development. J. Asia-Pacific Entomol. 4(2): 123-129 https://doi.org/10.1016/S1226-8615(08)60113-2
  6. Kim, S.S. 1984. Host range, population fluctuation, and effect of temperature of two-spotted spider mite (Tetranychus urticae K.). M. S. thesis. Joennam National University Kwangju, Korea. pp. 11-17
  7. Kim, Y.H., J.H. Kim, and S.G. Park. 2001b. Occurrences of twospotted spider mite on strawberry in commercial vinyl greenhouses. Korean Journal of Entomology 31(2): 139-142
  8. KSPP. 1986. A list of plant diseases, insect pests, and weeds in Korea. KSPP p. 633
  9. Lee, J.M., K, P. Kim, I.S. Kim, J.Y. Kim, J.H. Kim, H.Y. Kim, W. Moon, K.W. Park. Y. Park. Y.B. Park, J.B. Park. H.Y. Park. H.K. Park. J.K. Seo. S.L. Yang, Y.J. Yang, S.O. Lyu, H.M. Yun, J.S. Eun, B.I. Lee, S.S. Lee, Y.B. Lee, Y.B. Lee, S.J. Jeong, H.D. Jeong, J.L. Jo, and J.M. Hwang. 2003. Newly published vegetable horticulture particulars. Hayngmoonsa, Seoul, Korea, pp. 159-170
  10. Lee, S.Y. 1999. Host-preference of two spider mites, Tetranychus urticae and Tetranychus kanzawai (Tetranychidae: Acari). Ph. D. Dissertation, Chonbuk National University, Jeonju, Korea, p. 4
  11. Lee, W.K and S.Y. Lee. 1995. Studies on behavior of two-spotted spider mites. Natural Science Research Bulletin 39 of Chonbuk National University. pp. 207-214
  12. Lo, K.C. and C.C. Ho. 1979. Influence of temperature on life history, predation, and population parameters of Amblyseius longispinosus (Acarina: Phytoseiidae). J. Agric. Res. China 28: 237-250
  13. M.A.F. 2007. Production output of vegetable on 2006. 89-101 pp. Ministry of Agriculture and Forestry
  14. Maia, A.H. N., A.J.B. Luiz and C. Campanhola. 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: Computational aspects. J. Econ. Entomol. 93: 511-518 https://doi.org/10.1603/0022-0493-93.2.511
  15. Marcic, D. 2003. The effects of clofentezine on life-table parameters in two-spotted spider mite Tetranychus urticae. Experimental and Applied Acarology 30: 249-263 https://doi.org/10.1023/B:APPA.0000006541.68245.94
  16. Meyer, J.S., C.G. Igersoll, L.L. Macdonald, and M.S. Boyce. 1986. Estimating uncertainty in population growth rates: jackknife vs bootstrap techniques. Ecology 67: 1156-1166 https://doi.org/10.2307/1938671
  17. R.D.A. 2000. Diagnosis and control of disease and pest on vegetables. 1th ed., 199 pp. Academybook, Korea
  18. R.D.A. 2002. Eggplant growth technics. Rural Development Administration. pp. 25-159
  19. Sabelis, M. W. 1985. Development, In 'W. Helle and M. W. Sabelis [eds.], World crop pests: spider mites, their biology, natural enemies and control.' Vol. 1b. Elsevier, Amsterdam. pp. 43-53
  20. SAS Institute. 1999. SAS version 8.1 ,SAS Institute, Cary, N.C.
  21. Verman, A. 1997. Aspects of the induction of diapause in a laboratory strain of the Tetranycychus urticae. J. Insect Physiol. 23: 703-711 https://doi.org/10.1016/0022-1910(77)90087-7
  22. Wermelinger. B. and V. Delucchi. 1990. Effect of sex-ratio on multiplication of the two-spotted spider mite as affected by leaf nitrogen. Experimental and Applied Acarology 9(1-2): 11-18 https://doi.org/10.1007/BF01198979
  23. Yiem, M.S. 1993. Distribution characteristics and the effects of precipitation and wind velocity on field population density of Tetranychus urticae koch on apple trees. RDA. J. Agri. Sci. 35(1): 403-408

Cited by

  1. A review of life table applications and an introduction of its application method vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1159
  2. Species Dominance of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae) in Apple Orchards in the Southern part of Korea vol.53, pp.4, 2014, https://doi.org/10.5656/KSAE.2014.10.0.036