DOI QR코드

DOI QR Code

Tree Trunk Level Distribution of Entry Hole by Platypus koryoensis (Coleoptera: Platypodidae) and Its Implication to Tree Damage

광릉긴나무좀(Coleoptera: Platypodidae)의 수간내 분포와 참나무 피해

  • Choi, Won-Il (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Lee, Jung-Su (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Choi, Kwang-Sik (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) ;
  • Kim, Jong-Kuk (Department of Forest Resources Protection, Kangwon National University) ;
  • Shin, Sang-Chul (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute)
  • 최원일 (국립산림과학원 산림병해충과) ;
  • 이정수 (국립산림과학원 산림병해충과) ;
  • 최광식 (국립산림과학원 산림병해충과) ;
  • 김종국 (강원대학교 산림자원보호학과) ;
  • 신상철 (국립산림과학원 산림병해충과)
  • Published : 2008.06.30

Abstract

Ambrosia beetle, Platypus koryoensis, is a vector of oak wilt disease caused by Raffaelea sp. in Korea. The degree of damage by oak wilt disease was dependent on the density of the beetles in the oak trunk, a relationship between the degree of damage by oak wilt disease and the density of beetle on the basis of the number of entry hole was studied. Entry hole distribution within tree trunk was analyzed by the nearest neighbor method. Thirty four oak trees (Quercus mongolica) located in survey area were selected and then degree of damage, the number of attack hole/$623cm^2$ in upper (50cm from the surface) and lower (surface) trunk and the nearest neighbor distance between the holes were measured. The number of hole and the nearest neighbor distance in upper and lower part were positively correlated with each other. As the degree of damage was severer, the number of the holes increased, whereas the nearest neighbor distance decreased. The distribution pattern of the hole was changed from clumped one to uniform as the severity of damage increased. These results suggested that Platypus koryoensis attacked the oak tree in concentrative manner at initial stage of attack but at final stage, it distributed uniformly to reduce intraspecific competition between the beetles.

참나무시들음병의 매개충인 광릉긴나무좀, Platypus koryoensis(Murayama)은 한국에서 참나무시들음병원균인 Raffaelea sp.를 매개하는 것으로 알려져 있다. 참나무시들음 발병정도는 광릉긴나무좀의 밀도에 의존적인 것으로 추정되고 있다. 이에 (樹幹)내 천공수와 집중도가 참나무 피해정도에 미치는 영향을 구명하기 위하여 본 연구를 수행하였다. 수락산 피해지에서 고사목 6그루와 피해목 28그루의 신갈나무의 피해정도, 단위면적당 천공수, 천공간 최근거리를 수간의 상부(지표로부터 50cm)와 하부(지표면)에서 조사하였다. 상부와 하부에서의 천공수는 양의 상관을 보였으며 천공간 최근거리 또한 같은 경향을 보였다. 천공수가 증가할수록 수목의 피해도가 심하였으나 수목의 피해도가 심할수록 천공간 최근거리는 감소하였다. 천공의 분포도 수목의 피해도가 증가할수록 집중분포에서 군일분포로 바뀌었다. 광릉긴나무좀이 초기에는 집중적으로 공격을 하나 수간내 밀도가 증가함에 따라 종내경쟁이 일어나고 경쟁의 결과 개체간 간섭현상이 유도되고 천공의 공간적 분포가 균일하게 변환하게 된다는 것을 암시하는 것이다.

Keywords

References

  1. Bayers, J.A. 1984. Nearest neighbor analysis and simulation of distribution patterns indicates an attack spacing mechanism in the bark beetle, Ips typographus (Coleoptera: Scolytidae). Environ. Entomol. 13: 1191-1200 https://doi.org/10.1093/ee/13.5.1191
  2. Byers, J.A. 1983a. Bark beetle conversion of a plant compound to a sex-specific inhibitor of pheromone attraction. Science. 220: 624-626 https://doi.org/10.1126/science.220.4597.624
  3. Byers, J.A. 1983b. Sex-specific response to aggregation pheromone: regulation of colonization density by the bark beetle Ips paraconfusus, to their pheromones in the field. Ibid. 6: 149-164
  4. Clark, P.J. and F.C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology. 35: 445-453 https://doi.org/10.2307/1931034
  5. Esaki, K., N, Kamata, and K. Kato. 2002. A sticky trap for surveying aerial populations of the ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae). Appl. Entomol. Zool. 37: 27-35 https://doi.org/10.1303/aez.2002.27
  6. Esaki, K., K., Kato, and N. Kamata. 2004. Stand-level distribution and movement of Platypus quercivorus adults and patterns of incidence of new infestation. Agr. Forest Entomol. 6: 71-82 https://doi.org/10.1111/j.1461-9563.2004.00206.x
  7. Fierke, M.K., D.L. Kinney, V.B. Salisbury, D.J. Crook, and F.M. Stephen. 2005. A rapid estimation procedure for within-tree populations of red oak borer (Coleoptera: Cerambycidae). Forest Ecol. Manag. 215: 163-168 https://doi.org/10.1016/j.foreco.2005.05.009
  8. Hedden, R.L., and R.I. Gara. 1976. Spatial attack pattern of a Western Washington Douglas-fir beetle population. Forest Sci. 22: 100-102
  9. Hijii, N., H. Kajimura, T. Urano, H. Kinuura, and H. Itami. 1991. The mass mortality of oak trees induced by Platypus quercivorus (Coleoptera: Platypodidae)-The density and spatial distribution of attack by the beetles-. J. Jpn. For. Soc. 73: 471-476 (in Japanese with English summary)
  10. Igeta, Y., K. Esaki, K. Kato, and N. Kamata. 2004. Spatial distribution of a flying ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) at the stand level. Appl. Entomol. Zool. 39: 583-589 https://doi.org/10.1303/aez.2004.583
  11. Miller, J.M. and F.P. Keen. 1960. Biology and control of the Western Pine Beetle. U.S. Dep. Agric. Misc. Publ. No. 800
  12. Nilssen, A.C. 1978. Spatial attack pattern of the bark beetle Tomicus piniperda L. (Col., Scolytidae). Norw. J. Entomol. 25: 171-175
  13. Rudinsky, J.A., and R.R. Michael. 1973. Sound production in Scolytidae: stridulation by female Dendroctonus beetle. J. Insect Physiol. 19: 689-705 https://doi.org/10.1016/0022-1910(73)90078-4
  14. Rudinsky, J.A., L.C. Ryker, R.R. Michael, L.M. Libbey, and M.E. Morgan. 1976. Sound production in Scolytidae: female sonic stimulus of male pheromone release in two Dendroctonus beetle. Ibid. 22: 1675-1681 https://doi.org/10.1016/0022-1910(76)90061-5
  15. SAS institute. 2004. SAS user's guide. SAS institute, Cary, NC

Cited by

  1. Influence of global warming on forest coleopteran communities with special reference to ambrosia and bark beetles vol.14, pp.2, 2011, https://doi.org/10.1016/j.aspen.2010.10.001
  2. Influence of Trap Type and Location on Tree Trunk on Platypus koryoensis (Coleoptera: Platypodidae) Trapping vol.49, pp.2, 2010, https://doi.org/10.5656/KSAE.2010.49.2.145
  3. An empirical predictive model for the flight period of Platypus koryoensis (Coleoptera: Platypodinae) vol.48, pp.4, 2013, https://doi.org/10.1007/s13355-013-0213-3
  4. Density related plasticity in stand-level spatial distribution of the ambrosia beetle, Platypus koryoensis (Coleoptera: Curculionidae) vol.55, pp.1, 2013, https://doi.org/10.1007/s10144-012-0353-2
  5. Diurnal flight pattern of Platypus koryoensis (Coleoptera: Platypodinae) in relation to abiotic factors in Korea vol.17, pp.3, 2014, https://doi.org/10.1016/j.aspen.2014.03.006
  6. Diversity and Abundance of Bark Beetles (Coleoptera, Curculionidae: Scolytinae and Platypodinae) in Deadwoods of Quercus serrata and Carpinus laxiflora vol.50, pp.4, 2011, https://doi.org/10.5656/KSAE.2011.11.0.66
  7. Attack Pattern of Platypus koryoensis (Coleoptera: Curculionidae: Platypodinae) in Relation to Crown Dieback of Mongolian Oak in Korea vol.40, pp.6, 2011, https://doi.org/10.1603/EN11138
  8. The Effect ofRaffaelea quercus-mongolicaeInoculations on the Formation of Non-conductive Sapwood ofQuercus mongolica vol.42, pp.2, 2014, https://doi.org/10.5941/MYCO.2014.42.2.210