Pseudomonas sp.로부터 알칼리내성 amylase의 정제 및 특성 확인

Purification and Characterization of Alkali-resistant Amylases from Pseudomonas sp.

  • 이정은 (전남대학교 식품영양학과) ;
  • 전덕영 (전남대학교 식품영양학과)
  • Lee, Jeong-Eun (Department of Food and Nutrition, Chonnam National University) ;
  • Jhon, Deok-Young (Department of Food and Nutrition, Chonnam National University)
  • 발행 : 2008.02.28

초록

두 개의 amylase를 호알칼리성 Pseudomonas sp. KFCC 10818의 배양액으로부터 정제하여 그 특성을 조사하였다. 정제된 효소의 분자량은 각각 50 kDa과 75 kDa이었다. 이 효소들의 최적반응온도는 각각 $35^{\circ}C$$40^{\circ}C$였으며 50 kDa의 효소는 칼슘이온에 의하여 효소활성이 두 배로 촉진되었다. 이 두 효소는 최적 pH가 6-8 부근이었으며 pH 12의 조건에서도 효소활성을 유지하는 알칼리내성을 나타냈다. Maltooligosaccharide이나 soluble starch로부터 maltose와 maltotriose를 최종 효소반응산물로 생산하였다. 두 amylase는 N-말단 아미노산 서열이 각각 QTVPKTTFV와 DTVPGNAFQ로 분석되었다.

Two extracellular amylase isozymes were purified and characterized from alkalophilic Pseudomonas sp. KFCC 10818 for the production of maltooligosaccharides. The molecular weights of the homogeneous proteins were 50 kDa and 75 kDa, respectively. The 50 and 75 kDa amylases showed optimum temperatures at 35 and $40^{\circ}C$, respectively. The optimum pH of the enzymes ranged from pH 6-8, and the enzymes were resistant to an alkaline condition of pH 12. Via the enzyme's actions, the final products from maltooligosaccharides or soluble starch were maltose and maltotriose. Calcium was a potent activator of the 50 kDa amylase. Finally, the N-terminal amino acid sequences of the 50 and 75 kDa amylases were QTVPKTTFV and DTVPGNAFQ, respectively.

키워드

참고문헌

  1. Pandey A, Nigam P, Soccol CR, Soccol VT, Sing D, Mohan R. Advances in microbial amylases. Biotechnol. Appl. Bioc. 31: 135-152 (2000) https://doi.org/10.1042/BA19990073
  2. Takasaki Y. Purification and enzymatic properties of ${\beta}$-amylase and pullulanase from Bacillus cereus var. mycoides. Agric. Biol. Chem. 38: 1023-1029 (1976)
  3. Shen GJ, Saha BC, Lee YE, Bhatnagar L, Zeikus JG. Purification and characterization of a novel thermostable ${\beta}$-amylase from Clostridium thermosulphurogenes. Biochem. J. 254: 838-840 (1988)
  4. Osman AB. Amylase in chicken intestine and pancreas. Comp. Biochem. Physiol. 73B: 571-574 (1982)
  5. Chi ZM, Liu J, Zhang W. Trehalose accumulation from starch by Saccharomycopsis fibuligera sdu. Enzyme Microb. Tech. 28: 240-245 (2001) https://doi.org/10.1016/S0141-0229(00)00318-5
  6. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial ${\alpha}$-amylases: A biotechnological perspective. Process Biochem. 38: 1599-616 (2003) https://doi.org/10.1016/S0032-9592(03)00053-0
  7. Kim TU, Gu BG, Jeong JY, Byun SM, Shin YC. Purification and characterization of a maltotetraose-forming alkaline ${\alpha}-$-amylase from an alkalophilic Bacillus strain, GM8901. Appl. Environ. Microb. 61: 3105-3112 (1995)
  8. Saxena RK, Dutt K, Agarwal L, Nayyar P. A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresource Technol. 98: 260-265 (2007) https://doi.org/10.1016/j.biortech.2006.01.016
  9. Ballschmiter M, Futterer O, Liebl W. Identification and characterization of a novel intracellular alkaline ${\alpha}-$-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol. 72: 2206-2211 (2006) https://doi.org/10.1128/AEM.72.3.2206-2211.2006
  10. Cheong KA, Tang SY, Cheong TK, Cha H, Kim JW, Park KH. Thermostable and alkalophilic maltogenic amylase of Bacillus thermoalkalophilus ET2 in monomer-dimer equilibrium. Biocatal. Biotransfor. 23: 79-87 (2005) https://doi.org/10.1080/10242420500090094
  11. Bernhardsdotter ECMJ, Ng JD, Garriott OK, Pusey ML. Enzymic properties of an alkaline chelator-resistant ${\alpha}-$-amylase from an alkaliphilic Bacillus sp. isolate L1711. Process Biochem. 40: 2401-2408 (2005) https://doi.org/10.1016/j.procbio.2004.09.016
  12. Hashim SO, Delgado OD, Martinez MA, Kaul RH, Mulaa FJ, Mattiasson B. Alkaline active maltohexaose-forming ${\alpha}$-amylase from Bacillus halodurans LBK 34. Enzyme Microb. Tech. 36: 139-146 (2005) https://doi.org/10.1016/j.enzmictec.2004.07.017
  13. Das K, Doley R, Mukherjee AK. Purification and biochemical characterization of a thermostable, alkaliphilic, extracellular ${\alpha}$-amylase from Bacillus subtilis DM-03, a strain isolated from the traditional fermented food of India. Biotechnol. Appl. Bio. 40: 291-298 (2004) https://doi.org/10.1042/BA20040034
  14. Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T, Ito S. Enzymatic properties of a novel liquefying ${\alpha}$-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microb. 64: 3282-3289 (1998)
  15. Na HK, Kim ES, Lee HB, Yoo OJ, Jhon DY. Cloning and nucleotide sequence of the ${\alpha}$-amylase gene from alkalophilic Pseudomonas sp. KFCC 10818. Mol. Cells 6: 203-208 (1996)
  16. Kim ES, Na HK, Jhon DY, Yoo OJ, Chun SB, Wui IS. Cloning, sequencing and expression of the amylase isozyme gene from Pseudomonas sp. KFCC 10818. Biotechnol. Lett. 18: 169-174 (1996) https://doi.org/10.1007/BF00128674
  17. Kang EJ, Kim ES, Lee JE, Jhon DY. Cloning, sequencing, characterization, and expression of a new ${\alpha}$-amylase isozyme gene (amy3) from Pseudomonas sp. Biotechnol. Lett. 23: 811-816 (2001) https://doi.org/10.1023/A:1010313722620
  18. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959) https://doi.org/10.1021/ac60147a030
  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  20. Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  21. Laemmli UK. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227: 680-685 (1970) https://doi.org/10.1038/227680a0
  22. Nielsen AD, Fuglsang CC, Westh P. Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus ${\alpha}$-amylase: a calorimetric investigation. Biochem. J. 373: 337-343 (2003) https://doi.org/10.1042/BJ20030220
  23. Rao JLUM, Satyanarayana T. Purification and characterization of a hyperthermostable and high maltogenic ${\alpha}$-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl. Biochem. Biotech. 142: 179-193 (2007) https://doi.org/10.1007/s12010-007-0017-4
  24. Liu B, Wang YQ, Zhang XB. Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme Microb. Tech. 39: 805-810 (2006) https://doi.org/10.1016/j.enzmictec.2006.01.003
  25. Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, Park CS. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol. Lett. 252: 175-181 (2005) https://doi.org/10.1016/j.femsle.2005.08.050
  26. Kato K, Sugimoto T, Amemura A, Harada T. Pseudomonas intracellular amylase with high activity on maltodextrins and cyclodextrins. Biochim. Biophys. Acta 391: 96-108 (1975) https://doi.org/10.1016/0005-2744(75)90156-4
  27. Whitehead TR, Cotta MA. Identification of intracellular amylase activity in Streptococcusbovis and Streptococcussalivarius. Curr. Microbiol. 30: 143-148 (1995) https://doi.org/10.1007/BF00296199
  28. Simpson CL, Russell RRB. Intracellular ${\alpha}$-amylase of Streptococcus mutans. J. Bacteriol. 180: 4711-4717 (1998)
  29. Oishi M, Takahashi H, Maruo B. Intracellular ${\alpha}$-amylase in Bacillus subtilis. J. Bacteriol. 85: 246-247 (1963)
  30. Lim WJ, Park SR, An CL, Lee JY, Hong SY, Shin EC, Kim EJ, Kim JO, Kim H, Yun HD. Cloning and characterization of a thermostable intracellular ${\alpha}$-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Res. Microbiol. 154: 681-687 (2003) https://doi.org/10.1016/j.resmic.2003.09.005